• 제목/요약/키워드: Long-term design strength

검색결과 157건 처리시간 0.025초

Effects of Vibration Fatigue on Compression Strength of Corrugated Fiberboard Containers for Packaging of Fruits during Transport

  • Jung, Hyun-Mo;Park, Jeong-Gil
    • Journal of Biosystems Engineering
    • /
    • 제37권1호
    • /
    • pp.51-57
    • /
    • 2012
  • Purpose: The compression strength of corrugated fiberboard containers used to package agricultural products rapidly decreases owing to various environmental factors encountered during the distribution of unitized products. The main factors affecting compression strength are moisture absorption, long-term top load, and fatigue caused by shock and vibration during transport. This study characterized the durability of corrugated fiberboard containers for packaging fruits and vegetables under simulated transportation conditions. Methods: Compression tests were done after corrugated fiberboard containers containing fruit were vibrated by an electro-dynamic vibration test system using the power spectral density of routes typically traveled to transport fruits and vegetables in South Korea. Results: To predict loss of compression strength owing to vibration fatigue, a multiple nonlinear regression equation ($r^2=0.9217$, $RMSE=0.6347$) was developed using three independent variables of initial container compression strength, namely top stacked weight, loading weight, and vibration time. To test the applicability of our model, we compared our experimental results with those obtained during a road test in which peaches were transported in corrugated containers. Conclusions: The comparison revealed a highly significant ($p{\leq}0.05$) relationship between the experimental and road-test results.

근력강화 순서도를 활용한 운동 프로그램이 농촌 여성노인의 유연성, 악력, 우울에 미치는 영향 (Effect on Exercise Program using Muscle Strengthening Flowchart on Flexibility, Hand Strength and Depression in Rural Elderly Women)

  • 손계순
    • 한국농촌간호학회지
    • /
    • 제9권1호
    • /
    • pp.19-32
    • /
    • 2014
  • Purpose: The strudy was done to determine the effect of an exercise program using the muscle strengthening flowchart on flexibility and hand strength and depression of rural elderly women. Methods: For 11 months, from January 9, to November 29, 2013, a survey was done of 37 voluntary participants who were elderly women living in rural areas. This study was a one group pretest-posttest Quasi-experimental research design to identify the effectiveness of self-directed programs. The Korean version of the depression measurement tool (Jo and Kim, 1993) was used. The collected data were analyzed using frequency, descriptive statistics, and paired t-test with SPSS /PC 17.0 program. Results: Comparison of before and after the self-directed program showed that flexibility (p <.001), left grip strength (p <.001), and right grip strength (p <.001) were significantly increased. Depression (p <.001) was significantly reduced. Conclusion: The results of the study show that the exercise program using the muscle strengthening flowchart resulted in of significant muscle strengthening and reduction in depression in rural elderly women. Future use of the muscle strengthening flowchart is recommended to provide long-term operational exercise programs.

Effects of Sinusoidal Vibration Fatigue on Compression Strength of Corrugated Fiberboard Container for Packaging of Fruits

  • Jung, Hyun-Mo;Kim, Jong-Kyoung;Kim, Man-Soo
    • 한국포장학회지
    • /
    • 제16권1호
    • /
    • pp.1-4
    • /
    • 2010
  • The compression strength of corrugated fiberboard containers for packaging the agricultural products rapidly decreases because of various environmental conditions during distribution of unitized products. Among various environmental conditions, the main factors affecting the compression strength of corrugated fiberboard are absorption of moisture, long-term accumulative load, and fatigue caused by shock and vibration. An estimated rate of damage for fruit during distribution is about 30~40% owing to the shock and vibration. This study was carried out to characterize the durability of corrugated fiberboard containers for packaging the fruits and vegetables under simulated transportation environment. After the packaging freight was vibrated at various experimental conditions, the compression test for the packaging was performed. The compression strength of corrugated fiberboard containers decreased with loading weight and vibration time. The multiple nonlinear regression equation ($R^2$ = 0.9198) for predicting the decreasing rate of compression strength of corrugated fiberboard containers were developed using four independent variables such as input acceleration level, input frequency, loading weight and vibration time.

  • PDF

광물질 혼화재 종류에 따른 초고강도 콘크리트의 공학적 특성에 관한 실험적 연구 (An Experimental Study on the Engineering Properties of Ultra-High Strength Concrete according to Types of Mineral Admixtures)

  • 정현웅;강훈;이상수;송하영;김을용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.29-32
    • /
    • 2005
  • In this study, the experiment was carried out to investigate and analyze the strenth properties and flowability of ultra-high strength concrete accroding to types of mineral admixtures. The main experimental variables were water/binder ratio 25.0, 27.5 and 30.0$\%$, water content 155, 160, 165, and 170kg/$m^{3}$ and mineral admixtures such as fly ash, silica fume and meta kaolin. According to the test results, the principle conclusions are summarized as follows. 1) In case of using admixtures, superplasticizer amount need more than plain concrete. 2) According to kinds of admixtures, the viscosity of concrete show much difference. 3) The compressive strength of concrete that use admixtures becomes low in early-age strength, but appeared by higher than plain concrete in long-term strength. 4) Meta kaolin is excellent in side but has viscosity enlargement efficiency a little. But, problem estimates that is not to make design strength 600 and 700kgf/$cm^{2}$ if use mixing condition with water-binder ratio properly.

  • PDF

On the member reliability of wind force-resisting steel frames designed by EN and ASCE rules of load combinations

  • Kudzys, Antanas;Kudzys, Algirdas
    • Wind and Structures
    • /
    • 제12권5호
    • /
    • pp.425-439
    • /
    • 2009
  • The expediency of revising universal rules for the combination of gravity and lateral actions of wind force-resisting steel structures recommended by the Standards EN 1990 and ASCE/SEI 7-05 is discussed. Extreme wind forces, gravity actions and their combinations for the limit state design of structures are considered. The effect of statistical uncertainties of extreme wind pressure and steel yield strength on the structural safety of beam-column joints of wind force-resisting multistory steel frames designed by the partial factor design (PFD) and the load and resistance factor design (LRFD) methods is demonstrated. The limit state criterion and the performance process of steel frame joints are presented and considered. Their long-term survival probability analysis is based on the unsophisticated method of transformed conditional probabilities. A numerical example illustrates some discrepancies in international design standards and the necessity to revise the rule of universal combinations of loads in wind and structural engineering.

여자 축구선수를 위한 컴프레션 웨어 설계 (Compression Wear Design for Women's Soccer Players)

  • 박상희
    • 패션비즈니스
    • /
    • 제25권2호
    • /
    • pp.127-142
    • /
    • 2021
  • This study aims to organize the prototype design method of compression wear for women professional soccer players. Despite the excellent performance of female soccer players in world competition, most functional wear has been developed mainly for men, so professional female athletes have fewer choices. Soccer is a sport requiring core and lower body muscle strength, and muscular endurance for long periods of playing or walking on the field. Female soccer players did not differ much in upper body compared to other women, but their lower body had a smaller hip circumference than waist circumference and a larger thigh circumference, requiring compilation considering the physical characteristics and movement of athletes. Female soccer players wear sports bras while playing but regular bras and compression wear during normal exercise because they sweat on under their breast, which irritates sensitive skin. For core muscles in the upper body and to support for thigh and hip muscles in the lower body, the uniform in this study was designed by reducing the body size of a professional female soccer player in her 20s and the actual measurements of commercial compilation software to 81% of the chest circumference, 95% of the waist circumference, and 78% of the hip circumference. The design experiment in this study was a simple exercise and did not produce produce results for long-term exercise and performance improvement, but can be used to design a composition pattern system for other professional female athletes.

CAD/CAM을 이용한 구치부 전부도재 고정성 국소의치 지르코니아 코어의 연결부 설계에 따른 파절강도 (FRACTURE STRENGTH BETWEEN DIFFERENT CONNECTOR DESIGNS OF ZIRCONIA CORE FOR POSTERIOR FIXED PARTIAL DENTURES MANUFACTURED WITH CAD/CAM SYSTEM)

  • 서준용;박인임;이근우
    • 대한치과보철학회지
    • /
    • 제44권1호
    • /
    • pp.29-39
    • /
    • 2006
  • Statements of problem: Zirconia core is used for posterior fixed partial dentures because it's good mechanical properties. Stress is concentrated on connectors in fixed partial dentures, so the proper design of connector areas is needed for adequate mechanical long-term properties of any prosthesis. The area of connector is critical, but tooth size and surrounding soft tissue limit the connector design. Purpose: The purpose of this study is to compare fracture strengths between different connector designs of zirconia core for posterior fixed partial dentures manufactured with CAD/CAM system and determining the optimal connector design satisfying strength and hygiene. Material and method: The following four groups of 40 posterior fixed partial denture specimens(each group 10) were fabricated as followed; group 1 vertical height of connector is 3mm (control group, all groups have the same condition); group 2, lingual vertical 1mm reinforcement on connector; group 3, lingual vertical 2mm reinforcing on connector and group 4, lingual vertical 3mm reinforcing on connector. Specimens were subjected to compressive loading on the central fossa of pontic by instron. SEM was used to identify the initial crack and characterize the fracture mode. Results: The results were as follows: 1. The mean fracture load of the non-lingual reinforcing group was 1212N and the lingual vertical 1mm reinforcing group was 1510N, the lingual vertical 2mm reinforcing group was 1882N, the lingual vertical 3mm reinforcing group was 1980N. 2. The reinforcing groups were statistically significant compared to non-reinforcing groups(P<0.001). 3. There were 2, 3mm reinforcing groups that were statistically significant compared to 1mm reinforcing groups(P<0.001), and the 3mm reinforcing group was not statistically significant compared to 2mm reinforcing groups(P>0.05) 4. Fractures were initiated in gingival embrasures of connectors and processed to the loading site. Conclusion: In this study, lingual reinforcement of connector for improved strength of zirconia based fixed partial denture is nessasary. And long-term study for clinical application is required

혼화제를 사용한 공동주택 바닥마감 모르타르의 균열저감에 관한 연구 (A Study on the Crack Prevention of the Floor Surface Finishing Mortar adding Chemical Admixtures in Apartment Houses)

  • 이동운
    • 한국산학기술학회논문지
    • /
    • 제16권2호
    • /
    • pp.1541-1548
    • /
    • 2015
  • 본 연구에서는 공동주택 바닥미장 모르타르의 균열을 저감하기 위하여 균열 방지제, 고성능 감수제, 수지 등의 재료혼입에 따른 균열촉진실험을 실시하였다. 그 결과 고성능 감수제와 수지를 혼입한 시편이 균열방지제를 사용한 시편보다 균열수와 압축강도에서 더 우수한 결과를 나타내었다. 그리고 가장 높은 압축강도를 나타낸 시편이 상대적으로 매우 적은 균열을 나타냈으며, 가장 낮은 압축강도를 나타낸 시편에서 많은 균열을 관찰할 수 있었다. 그러므로 압축강도가 우수한 시편이 균열 저항성도 우수한 것으로 나타나 압축강도와 균열저항성은 비례하는 것으로 측정되었다. 모의부재 실험을 바탕으로 실제 아파트 현장에 적용된 배합 3의 장기 모니터링 결과, 장기 재령에서 균열발생이 전혀 관찰되지 않았다.

콘크리트궤도용 강성보강노반의 시공 중 거동에 관한 연구 (A Study on the Behavior during Constructing of Rigid Reinforced Roadbed to apply for the Slab Track)

  • 김기환;김대상;박성용;박종식;유충식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.1774-1785
    • /
    • 2011
  • In this paper, Rigid Reinforced Roadbed(RRR) which is expected to have highly applicability to railroad roadbed, was introduced and field tests results were analyzed. Full scale model with 5m height concerning a single track railroad roadbed was constructed. The model had four different sections, which was to assess the effect of geogrid length, spacing, and connection method on deformation characteristics of RRR. Laser displacement meter, earth pressure cell, piezometer, and strain gauge were installed in order to analyze the behavior of reinforced embankment during construction. Horizontal displacements caused by compaction at each section were 20~30% below the displacement limit that of general reinforced retaining wall, which showed that RRR was very stable structure. Maximum tensile strength of reinforcement was withing 10% of the long-term design strength.

  • PDF

층상 유한요소를 이용한 철근콘크리트 보의 처짐 해석모델 (Analytical Modeling for Reinforced Concrete Beam Deflections Using Layered Finite Elements)

  • 최봉섭;권영웅
    • 콘크리트학회논문집
    • /
    • 제11권5호
    • /
    • pp.131-137
    • /
    • 1999
  • The use of higher strength materials with the strength methed of design has resulted in more slender member and shallower sections. For this reason, it is necessary to satisfy the requirements of serviceability even though the structural safety is the most important limit state. This paper is only concerned with the control of deflections in the serviceability. In this study, an analytical model is presented to predict the deflections of reinforced concrete beams to given loading and environmental conditions. This model is based on the finite element approach in which a finite element is generally divided into a number of stiffening effect due to cracking, creep and shrinkage. Comparisons are made with available measured deflections reported by others to assess the capability of the layered beam model. The calculated values of instantaneous and long-term deflection show good agreement with experimental results in the range of tension stiffening parameter $\beta$ between 2.5 and 3.0.