• Title/Summary/Keyword: Long-term Time Series

Search Result 581, Processing Time 0.027 seconds

Modeling and analysis of selected organization for economic cooperation and development PKL-3 station blackout experiments using TRACE

  • Mukin, Roman;Clifford, Ivor;Zerkak, Omar;Ferroukhi, Hakim
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.356-367
    • /
    • 2018
  • A series of tests dedicated to station blackout (SBO) accident scenarios have been recently performed at the $Prim{\ddot{a}}rkreislauf-Versuchsanlage$ (primary coolant loop test facility; PKL) facility in the framework of the OECD/NEA PKL-3 project. These investigations address current safety issues related to beyond design basis accident transients with significant core heat up. This work presents a detailed analysis using the best estimate thermal-hydraulic code TRACE (v5.0 Patch4) of different SBO scenarios conducted at the PKL facility; failures of high- and low-pressure safety injection systems together with steam generator (SG) feedwater supply are considered, thus calling for adequate accident management actions and timely implementation of alternative emergency cooling procedures to prevent core meltdown. The presented analysis evaluates the capability of the applied TRACE model of the PKL facility to correctly capture the sequences of events in the different SBO scenarios, namely the SBO tests H2.1, H2.2 run 1 and H2.2 run 2, including symmetric or asymmetric secondary side depressurization, primary side depressurization, accumulator (ACC) injection in the cold legs and secondary side feeding with mobile pump and/or primary side emergency core coolant injection from the fuel pool cooling pump. This study is focused specifically on the prediction of the core exit temperature, which drives the execution of the most relevant accident management actions. This work presents, in particular, the key improvements made to the TRACE model that helped to improve the code predictions, including the modeling of dynamical heat losses, the nodalization of SGs' heat exchanger tubes and the ACCs. Another relevant aspect of this work is to evaluate how well the model simulations of the three different scenarios qualitatively and quantitatively capture the trends and results exhibited by the actual experiments. For instance, how the number of SGs considered for secondary side depressurization affects the heat transfer from primary side; how the discharge capacity of the pressurizer relief valve affects the dynamics of the transient; how ACC initial pressure and nitrogen release affect the grace time between ACC injection and subsequent core heat up; and how well the alternative feeding modes of the secondary and/or primary side with mobile injection pumps affect core quenching and ensure stable long-term core cooling under controlled boiling conditions.

Monitoring of Shoreline Change using Satellite Imagery and Aerial Photograph : For the Jukbyeon, Uljin (위성영상 및 항공사진을 이용한 해안선 변화 모니터링 : 울진군 죽변면 연안을 대상으로)

  • Eom, Jin-Ah;Choi, Jong-Kuk;Ryu, Joo-Hyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.571-580
    • /
    • 2010
  • Coastal shoreline movement due to erosion and deposition is a major concern for coastal zone management. Shoreline is changed by nature factor or development of coastal. Change of shoreline is threatening marine environment and destroying. Therefore, we need monitoring of shoreline change with time series analysis for coastal zone management. In this study, we analyzed the shoreline change using airphotograph, LiDAR and satellite imagery from 1971 to 2009 in Uljin, Gyeongbuk, Korea. As a result, shoreline near of the nuclear power plant show linear pattern in 1971 and 1980, however the pattern of shoreline is changed after 2000. As a result of long-term monitoring, shoreline pattern near of the nuclear power plant is changed by erosion toward sea. The pattern of shoreline near of KORDI until 2003 is changed due to deposition toward sea, but the new pattern toward land is developed by erosion from 2003 to 2009. The shoreline is changed by many factors. However, we will guess that change of shoreline within study area is due to construction of nuclear power plant. In the future work, we need sedimentary and physical studies.

Compilation of records and Management of those materials, in the latter half period of the Joseon dynasty (조선후기 기록물 편찬과 관리)

  • Shin, Byung Ju
    • The Korean Journal of Archival Studies
    • /
    • no.17
    • /
    • pp.39-84
    • /
    • 2008
  • In this article, how the records were compiled, stored and managed during the latter half period of the Joseon dynasty is examined. In details, the compilation of and and Euigwe, the establishment of 'history chambers(史庫)' and the Wae-Gyujanggak facility, and the creation of records such as 'Shillok Hyeongji-an', are all investigated. Examination of all these details revealed that in the latter half period of the Joseon dynasty, it was the royal family which actively led the task of meticulously compiling records and also storing & managing those established materials with great integrity and passion. The intention behind creating all these records containing everything the kings said and done over centuries must have been determination to enhance the openness and integrity of politics in general, while also emphasizing the importance of such values inside the government. In order to establish a tradition preserving records not only for a limited time period but also for eternity, 'history chambers' were founded in rocky mountain areas, and additional chambers(Wae-Sago) were created as well, in areas deemed strategically safe in military terms such as the Ganghwa-do island. Officials put in charge by the king himself of historical documenting reported to the history chambers on a regular basis and checked the status of the materials in custody, and the whole checking process was documented into a form called 'Shillok Hyeongji-an'. And for long-term preservation of materials, officials sent by the king regularly took all the materials outside, and conducted a series of 'desiccating procedures', under strong sunlight('Poswae'). Thanks to the efforts of our ancestors who did their best to preserve all the records, and tried everything to manage them with great caution, we can examine and experience all these centuries-old materials, mostly intact. It is imperative that we inherit not only the magnificent culture of creating and preserving records, but also the spirit which compelled our ancestors to do so.

Prediction of Traffic Congestion in Seoul by Deep Neural Network (심층인공신경망(DNN)과 다각도 상황 정보 기반의 서울시 도로 링크별 교통 혼잡도 예측)

  • Kim, Dong Hyun;Hwang, Kee Yeon;Yoon, Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.4
    • /
    • pp.44-57
    • /
    • 2019
  • Various studies have been conducted to solve traffic congestions in many metropolitan cities through accurate traffic flow prediction. Most studies are based on the assumption that past traffic patterns repeat in the future. Models based on such an assumption fall short in case irregular traffic patterns abruptly occur. Instead, the approaches such as predicting traffic pattern through big data analytics and artificial intelligence have emerged. Specifically, deep learning algorithms such as RNN have been prevalent for tackling the problems of predicting temporal traffic flow as a time series. However, these algorithms do not perform well in terms of long-term prediction. In this paper, we take into account various external factors that may affect the traffic flows. We model the correlation between the multi-dimensional context information with temporal traffic speed pattern using deep neural networks. Our model trained with the traffic data from TOPIS system by Seoul, Korea can predict traffic speed on a specific date with the accuracy reaching nearly 90%. We expect that the accuracy can be improved further by taking into account additional factors such as accidents and constructions for the prediction.

Utility of a modified components separation for abdominal wall reconstruction in the liver and kidney transplant population

  • Black, Cara K;Zolper, Elizabeth G;Walters, Elliot T;Wang, Jessica;Martinez, Jesus;Tran, Andrew;Naz, Iram;Kotha, Vikas;Kim, Paul J;Sher, Sarah R;Evans, Karen K
    • Archives of Plastic Surgery
    • /
    • v.46 no.5
    • /
    • pp.462-469
    • /
    • 2019
  • Background Incisional hernia is a common complication following visceral organ transplantation. Transplant patients are at increased risk of primary and recurrent hernias due to chronic immune suppression and large incisions. We conducted a retrospective review of patients with a history of liver or kidney transplantation who underwent hernia repair to analyze outcomes and hernia recurrence. Methods This is a single center, retrospective review of 19 patients who received kidney and/or liver transplantation prior to presenting with an incisional hernia from 2011 to 2017. All hernias were repaired with open component separation technique (CST) with biologic mesh underlay. Results The mean age of patients was $61.0{\pm}8.3years\;old$, with a mean body mass index of $28.4{\pm}4.8kg/m^2$, 15 males (78.9%), and four females (21.1%). There were seven kidney, 11 liver, and one combined liver and kidney transplant patients. The most common comorbidities were hypertension (16 patients, 84.2%), diabetes (9 patients, 47.4%), and tobacco use (8 patients, 42.1%). Complications occurred in six patients (31.6%) including hematoma (1/19), abscess (1/19), seroma (2/19), and hernia recurrence (3/19) at mean follow-up of $28.7{\pm}22.8months$. With the exception of two patients with incomplete follow-up, all patients healed at a median time of 27 days. Conclusions This small, retrospective series of complex open CST in transplant patients shows acceptable rates of long-term hernia recurrence and healing. By using a multidisciplinary approach for abdominal wall reconstruction, we believe that modified open CST with biologic mesh is a safe and effective technique in the transplant population with complex abdominal hernias.

Characteristics of Groundwater Levels Fluctuation and Quality in Ddan-sum Area (낙동강 하중도 딴섬의 지하수위 변동 및 수질 특성)

  • Kim, Gyoobum;Choi, Doohoung;Shin, Seonho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.2
    • /
    • pp.35-43
    • /
    • 2011
  • Confined aquifer, which is separated with upper clayey or silty materials, is partially distributed at the depths of the sediments in Ddan-sum area on the lower Nakdong river. Measurements of groundwater levels at 13 sites explain that groundwater flow shows seasonally various due to seasonal rainfall and agricultural water use. From 9 long-term monitoring data of groundwater levels at 7 sites, 3 types of groundwater levels time series can be classified using principal component analysis. The first type is seen in the center of Ddan-sum and has a round-shape graph due to a weak response to stream water levels. The second type exists in the outer part of Ddan-sum and shows sharply peak-shape graph due to a rapid and strong response to stream water levels and rainfall. The last type, which is seen in a deep layer, has a periodicity by tital effect. From geochemical analysis at each monitoring sites, [$Ca-HCO_3$] type happens in the center of Ddan-sum far from Nakdong river, and [$Na-HCO_3$] and [$Ca-SO_4(Cl)$] types exist in the outer of Ddan-sum affected by river quality.

Development of Dolphin Click Signal Classification Algorithm Based on Recurrent Neural Network for Marine Environment Monitoring (해양환경 모니터링을 위한 순환 신경망 기반의 돌고래 클릭 신호 분류 알고리즘 개발)

  • Seoje Jeong;Wookeen Chung;Sungryul Shin;Donghyeon Kim;Jeasoo Kim;Gihoon Byun;Dawoon Lee
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.3
    • /
    • pp.126-137
    • /
    • 2023
  • In this study, a recurrent neural network (RNN) was employed as a methodological approach to classify dolphin click signals derived from ocean monitoring data. To improve the accuracy of click signal classification, the single time series data were transformed into fractional domains using fractional Fourier transform to expand its features. Transformed data were used as input for three RNN models: long short-term memory (LSTM), gated recurrent unit (GRU), and bidirectional LSTM (BiLSTM), which were compared to determine the optimal network for the classification of signals. Because the fractional Fourier transform displayed different characteristics depending on the chosen angle parameter, the optimal angle range for each RNN was first determined. To evaluate network performance, metrics such as accuracy, precision, recall, and F1-score were employed. Numerical experiments demonstrated that all three networks performed well, however, the BiLSTM network outperformed LSTM and GRU in terms of learning results. Furthermore, the BiLSTM network provided lower misclassification than the other networks and was deemed the most practically appliable to field data.

The Analysis of Future Land Use Change Impact on Hydrology and Water Quality Using SWAT Model (SWAT 모형을 이용한 미래 토지이용변화가 수문 - 수질에 미치는 영향 분석)

  • Park, Jong-Yoon;Lee, Mi Seon;Lee, Yong Jun;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2B
    • /
    • pp.187-197
    • /
    • 2008
  • This study is to assess the impact of future land use change on hydrology and water quality in Gyungan-cheon watershed ($255.44km^2$) using SWAT (Soil and Water Assessment Tool) model. Using the 5 past Landsat TM (1987, 1991, 1996, 2004) and $ETM^+$ (2001) satellite images, time series of land use map were prepared, and the future land uses (2030, 2060, 2090) were predicted using CA-Markov technique. The 4 years streamflow and water quality data (SS, T-N, T-P) and DEM (Digital Elevation Model), stream network, and soil information (1:25,000) were prepared. The model was calibrated for 2 years (1999 and 2000), and verified for 2 years (2001 and 2002) with averaged Nash and Sutcliffe model efficiency of 0.59 for streamflow and determination coefficient of 0.88, 0.72, 0.68 for Sediment, T-N (Total Nitrogen), T-P (Total Phosphorous) respectively. The 2030, 2060 and 2090 future prediction based on 2004 values showed that the total runoff increased 1.4%, 2.0% and 2.7% for 0.6, 0.8 and 1.1 increase of watershed averaged CN value. For the future Sediment, T-N and T-P based on 2004 values, 51.4%, 5.0% and 11.7% increase in 2030, 70.5%, 8.5% and 16.7% increase in 2060, and 74.9%, 10.9% and 19.9% increase in 2090.

Analysis for Precipitation Trend and Elasticity of Precipitation-Streamflow According to Climate Changes (기후변화에 따른 강우 경향성 및 유출과의 탄성도 분석)

  • Shon, Tae Seok;Shin, Hyun Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5B
    • /
    • pp.497-507
    • /
    • 2010
  • Climate changes affect greatly natural ecosystem, human social and economic system acting on constituting the climate system such as air, ocean, life, glacier and land, etc. and estimating the current impact of climate change would be the most important thing to adapt to the climate changes. This study set the target area to Nakdong river watershed and investigated the impact of climate changes through analyzing precipitation tendency, and to understand the impact of climate changes on hydrological elements, analyzed elasticity of precipitation-streamflow. For the analysis of precipitation trend, collecting the precipitation data of the National Weather Service from major points of Nakdong river watershed, resampling them at the units of year, season and month, used as the data of precipitation trend analysis. To analyze precipitation-streamflow elasticity, collecting area average precipitation and long-term streamflow data provided by WAMIS, annual and seasonal time-series were analyzed. In addition, The results of this study and elasticity, and other abroad study compared with the elasticity analysis and the validity of this study was verified. Results of this study will be able to be utilized for study on a plan to increase of flood control ability of flooding constructs caused by the increase of streamflow around Nakdong river watershed due to climate changes and on a plan of adapting to water environment according to climate changes.

The Conversion of Chonsei into Monetary Costs and its Relationship with the Consumer Price Index (전세가격의 비용화와 소비자물가지수: 소비자물가지수 자가주거비 반영을 중심으로)

  • JIYOON OH
    • KDI Journal of Economic Policy
    • /
    • v.45 no.4
    • /
    • pp.57-77
    • /
    • 2023
  • The Chonsei component holds the highest level of weight (5.4%) in the composition of the Korean consumer price index (CPI). The variations in Chonsei prices are directly reflected in the CPI as a representation of cost swings. The Chonsei refers to a deposit that accumulates the costs related to housing services and is mostly affected by variations in rental rates. Nevertheless, it is important to note that Chonsei prices are also susceptible to fluctuations in interest rates, regardless of the rent prices. Therefore, if Chonsei were directly and one-to-one indexed to the CPI, they could include changes other than residential service prices. After analyzing the time series data of the Chonsei index and rent index inside the CPI, it becomes apparent that the Chonsei index displays an average annual growth rate of 2.3%, whilst the rent index reveals a growth rate of 0.9%. The observed disparity in growth rates indicates a divergence in trends between the two indices. It is posited that the Chonsei index, when capitalized, has had a more rapid increase compared to the rental index, owing to the gradual drop in interest rates. To effectively reflect fluctuations in the housing service costs, proxies for the Chonsei index were utilized in the construction of a consumer price index. The findings of our study suggest that, overall, the newly developed CPI demonstrates a comparatively lower rate of inflation when compared to the official CPI. Furthermore, the inclusion of imputed rents for owner-occupied housing in CPI amplifies this effect.