• Title/Summary/Keyword: Long-term Prediction

Search Result 950, Processing Time 0.024 seconds

Comparative Study of Performance of Deep Learning Algorithms in Particulate Matter Concentration Prediction (미세먼지 농도 예측을 위한 딥러닝 알고리즘별 성능 비교)

  • Cho, Kyoung-Woo;Jung, Yong-jin;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.5
    • /
    • pp.409-414
    • /
    • 2021
  • The growing concerns on the emission of particulate matter has prompted a demand for highly reliable particulate matter forecasting. Currently, several studies on particulate matter prediction use various deep learning algorithms. In this study, we compared the predictive performances of typical neural networks used for particulate matter prediction. We used deep neural network(DNN), recurrent neural network, and long short-term memory algorithms to design an optimal predictive model on the basis of a hyperparameter search. The results of a comparative analysis of the predictive performances of the models indicate that the variation trend of the actual and predicted values generally showed a good performance. In the analysis based on the root mean square error and accuracy, the DNN-based prediction model showed a higher reliability for prediction errors compared with the other prediction models.

Prediction of the Major Factors for the Analysis of the Erosion Effect on Atomic Oxygen in LEO Satellite Using a Machine Learning Method (LSTM)

  • Kim, You Gwang;Park, Eung Sik;Kim, Byung Chun;Lee, Suk Hoon;Lee, Seo Hyun
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.2
    • /
    • pp.50-56
    • /
    • 2020
  • In this study, we investigated whether long short-term memory (LSTM) can be used in the future to predict F10.7 index data; the F10.7 index is a space environment factor affecting atomic oxygen erosion. Based on this, we compared the prediction performances of LSTM, the Autoregressive integrated moving average (ARIMA) model (which is a traditional statistical prediction model), and the similar pattern searching method used for long-term prediction. The LSTM model yielded superior results compared to the other techniques in the prediction period starting from the max/min points, but presented inferior results in the prediction period including the inflection points. It was found that efficient learning was not achieved, owing to the lack of currently available learning data in the prediction period including the maximum points. To overcome this, we proposed a method to increase the size of the learning samples using the sunspot data and to upgrade the LSTM model.

Long-term Prediction of Bus Travel Time Using Bus Information System Data (BIS 자료를 이용한 중장기 버스 통행시간 예측)

  • LEE, Jooyoung;Gu, Eunmo;KIM, Hyungjoo;JANG, Kitae
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.4
    • /
    • pp.348-359
    • /
    • 2017
  • Recently, various public transportation activation policies are being implemented in order to mitigate traffic congestion in metropolitan areas. Especially in the metropolitan area, the bus information system has been introduced to provide information on the current location of the bus and the estimated arrival time. However, it is difficult to predict the travel time due to repetitive traffic congestion in buses passing through complex urban areas due to repetitive traffic congestion and bus bunching. The previous bus travel time study has difficulties in providing information on route travel time of bus users and information on long-term travel time due to short-term travel time prediction based on the data-driven method. In this study, the path based long-term bus travel time prediction methodology is studied. For this purpose, the training data is composed of 2015 bus travel information and the 2016 data are composed of verification data. We analyze bus travel information and factors affecting bus travel time were classified into departure time, day of week, and weather factors. These factors were used into clusters with similar patterns using self organizing map. Based on the derived clusters, the reference table for bus travel time by day and departure time for sunny and rainy days were constructed. The accuracy of bus travel time derived from this study was verified using the verification data. It is expected that the prediction algorithm of this paper could overcome the limitation of the existing intuitive and empirical approach, and it is possible to improve bus user satisfaction and to establish flexible public transportation policy by improving prediction accuracy.

Long-term Streamflow Prediction Using ESP and RDAPS Model (ESP와 RDAPS 수치예보를 이용한 장기유량예측)

  • Lee, Sang-Jin;Jeong, Chang-Sam;Kim, Joo-Cheol;Hwang, Man-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.12
    • /
    • pp.967-974
    • /
    • 2011
  • Based on daily time series from RDAPS numerical weather forecast, Streamflow prediction was simulated and the result of ESP analysis was implemented considering quantitative mid- and long-term forecast to compare the results and review applicability. The result of ESP, ESP considering quantitative weather forecast, and flow forecast from RDAPS numerical weather forecast were compared and analyzed with average observed streamflow in Guem River Basin. Through this process, the improvement effect per method was estimated. The result of ESP considering weather information was satisfactory relatively based on long-term flow forecast simulation result. Discrepancy ratio analysis for estimating accuracy of probability forecast had similar result. It is expected to simulate more accurate flow forecast for RDAPS numerical weather forecast with improved daily scenario including time resolution, which is able to accumulate 3 hours rainfall or continuous simulation estimation.

A Study on the Applicability of Prediction Methods for Long-term Ground Settlement in Soft Ground of Gyeongnam Area (경남지역 연약지반의 장기침하량 예측방법에 대한 적용성 연구)

  • Park, Eunhyung;An, Ducklae;Chae, Hwiyoung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.5-13
    • /
    • 2012
  • In this study, the degrees of consolidation were evaluated by analyzing the long-term settlement measured at the 3 work sites with soft ground in Gyeongnam Area. The Hyperbolic, Hoshino and Asaoka method were used, which were focused on prediction of long-term settlement of land on the basis of field measurement data. And the applicability of the settlement prediction method according to the measurement periods was investigated by analyzing the degree of consolidation at the target areas after dividing the terms into early and latter parts. According to the results obtained at the early stage of consolidation, the Hyperbolic method appeared to be in the highest applicability level, which was followed by Asaoka and Hoshino method in the order of level. In the case of latter stage of consolidation, Asaoka method appeared to be in the highest applicability level, which was followed by and the Hyperbolic, Hoshino method in the order of level.

Development of Artificial Intelligence-Based Remote-Sense Reflectance Prediction Model Using Long-Term GOCI Data (장기 GOCI 자료를 활용한 인공지능 기반 원격 반사도 예측 모델 개발)

  • Donguk Lee;Joo Hyung Ryu;Hyeong-Tae Jou;Geunho Kwak
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1577-1589
    • /
    • 2023
  • Recently, the necessity of predicting changes for monitoring ocean is widely recognized. In this study, we performed a time series prediction of remote-sensing reflectance (Rrs), which can indicate changes in the ocean, using Geostationary Ocean Color Imager (GOCI) data. Using GOCI-I data, we trained a multi-scale Convolutional Long-Short-Term-Memory (ConvLSTM) which is proposed in this study. Validation was conducted using GOCI-II data acquired at different periods from GOCI-I. We compared model performance with the existing ConvLSTM models. The results showed that the proposed model, which considers both spatial and temporal features, outperformed other models in predicting temporal trends of Rrs. We checked the temporal trends of Rrs learned by the model through long-term prediction results. Consequently, we anticipate that it would be available in periodic change detection.

Measurement and Prediction of Long-term Deflection of Flat Plate Affected by Construction Load (시공하중에 의한 플랫 플레이트의 장기처짐 계측 및 해석)

  • Hwang, Hyeon-Jong;Park, Hong-Gun;Hong, Geon-Ho;Kim, Jae-Yo;Kim, Yong-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.615-625
    • /
    • 2014
  • Excessive long-term slab deflection caused by construction load is a critical issue for the design of concrete slabs, as long span flat plates become popular for tall buildings. In the present study, the effect of construction load causing early slab cracking on the long-term deflection was theoretically studied. On the basis of the result, a numerical analysis method was developed to predict the long-term deflection of flat plates. In the proposed method, immediate deflection due to slab cracking and long-term effect of creep and shrinkage were considered. To verify the construction load effect, long-term slab deflections were measured in actual flat plate buildings under construction. The results showed that the immediate deflection due to the construction load increased significantly the long-term deflection. The proposed method was used to predict the deflections of the buildings. The results were compared with the measurement results. The predictions agree well with the long-term deflections of flat plate affected by construction load.

Comparison of Different Deep Learning Optimizers for Modeling Photovoltaic Power

  • Poudel, Prasis;Bae, Sang Hyun;Jang, Bongseog
    • Journal of Integrative Natural Science
    • /
    • v.11 no.4
    • /
    • pp.204-208
    • /
    • 2018
  • Comparison of different optimizer performance in photovoltaic power modeling using artificial neural deep learning techniques is described in this paper. Six different deep learning optimizers are tested for Long-Short-Term Memory networks in this study. The optimizers are namely Adam, Stochastic Gradient Descent, Root Mean Square Propagation, Adaptive Gradient, and some variants such as Adamax and Nadam. For comparing the optimization techniques, high and low fluctuated photovoltaic power output are examined and the power output is real data obtained from the site at Mokpo university. Using Python Keras version, we have developed the prediction program for the performance evaluation of the optimizations. The prediction error results of each optimizer in both high and low power cases shows that the Adam has better performance compared to the other optimizers.

LSTM-based Sales Forecasting Model

  • Hong, Jun-Ki
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1232-1245
    • /
    • 2021
  • In this study, prediction of product sales as they relate to changes in temperature is proposed. This model uses long short-term memory (LSTM), which has shown excellent performance for time series predictions. For verification of the proposed sales prediction model, the sales of short pants, flip-flop sandals, and winter outerwear are predicted based on changes in temperature and time series sales data for clothing products collected from 2015 to 2019 (a total of 1,865 days). The sales predictions using the proposed model show increases in the sale of shorts and flip-flops as the temperature rises (a pattern similar to actual sales), while the sale of winter outerwear increases as the temperature decreases.

Remaining Useful Life Prediction for Litium-Ion Batteries Using EMD-CNN-LSTM Hybrid Method (EMD-CNN-LSTM을 이용한 하이브리드 방식의 리튬 이온 배터리 잔여 수명 예측)

  • Lim, Je-Yeong;Kim, Dong-Hwan;Noh, Tae-Won;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.48-55
    • /
    • 2022
  • This paper proposes a battery remaining useful life (RUL) prediction method using a deep learning-based EMD-CNN-LSTM hybrid method. The proposed method pre-processes capacity data by applying empirical mode decomposition (EMD) and predicts the remaining useful life using CNN-LSTM. CNN-LSTM is a hybrid method that combines convolution neural network (CNN), which analyzes spatial features, and long short term memory (LSTM), which is a deep learning technique that processes time series data analysis. The performance of the proposed remaining useful life prediction method is verified using the battery aging experiment data provided by the NASA Ames Prognostics Center of Excellence and shows higher accuracy than does the conventional method.