• Title/Summary/Keyword: Long-Term Durability

Search Result 508, Processing Time 0.028 seconds

A Study on Determination of Frequency Storage Capacities by Inflows (유입량에 따른 빈도별 저수용량 결정에 관한 연구)

  • Choi, Han-Kyu;Choi, Yong-Mook;Jeon, Kwang-Je
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.131-138
    • /
    • 2000
  • A past monthly data is not faithful so much for a short term. But, the stochastic generation technique was provide of a long-term data. Thus this study is used a data which generated a monthly inflow amounts data by Thomas-Fiering model. This model is needed a certain process which determination of distribution, decision of continuous durability, etc. It was generated a inflow data every one month as Thomas-Fiering method. The generated inflow data was used input data for a monthly cumulative analysis. This analysis obtained a storage capacities which would be required during droughts having various return periods. It was presented a equation of fitting regression that was carried out regression analysis of 5, 10, 20, 50 years period.

  • PDF

Mid term experience with CarboMedics Medical Valve (CarboMedics 기계판막의 임상경험)

  • 김기출
    • Journal of Chest Surgery
    • /
    • v.26 no.10
    • /
    • pp.753-760
    • /
    • 1993
  • The CarboMedics valve is a bileaflet prosthesis with excellent hemodynamic characteristics, but the long term surgical experience with this valve, its durability and its biocompatibility are unknown. During a 5 year period from october 1988 to July 1993, 748 prostheses [402 mitral, 261 aortic, 58 tricuspid, 27 pulmonic] were inserted in 552 patients [mean age 40.2 years]. The operative mortality was 6.6% [37/560, 13.2% in age group below 15 years and 5.7% above 15 years]. and the main causes of death were complex congenital malformation and left ventricular failure. Follow up was totaled 1182 patient- years and mean follow up was 28.3 months/patient. No structural failure has been observed. Hemorrhage was the most frequent valve related complication[1.78% / Patient-year]. Embolism occurred at a rate of 0.93% / Patient-year. There were 5 cases of valve thrombosis [0.42% / Patient-year, two fatal]. There occurred 11 late deaths[6 valve related] and 42 valve related complications. Actuarial survival at 5 years is 97.18 0.94% and actuarial complication free survival at 5 years is 89.07 1.54%. In summary, the CarboMedics valve stands for a durable valve substitute, with low valve related complications.

  • PDF

Understanding Facility Management on Tunnel through Text Mining of Precision Safety Diagnosis Data (터널시설물 점검진단 데이터의 텍스트마이닝 분석을 통한 유형별·지역별 중점 유지관리요소의 이해)

  • Seo, Jeong-eun;Oh, Jintak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.3
    • /
    • pp.85-92
    • /
    • 2021
  • The purpose of this paper is to understand the key factors for efficient maintenance of rapidly aging facilities. Therefore, the safety inspection/diagnosis reports accumulated in the unstructured data were collected and preprocessed. Then, the analysis was performed using a text mining analysis method. The derived vulnerabilities of tunnel facilities can be used as elements of inspections that take into account the characteristics of individual facilities during regular inspections and daily inspections in the short term. In addition, if detailed specification information and other inspection results(safety, durability, and ease of use) are used for analysis, it provides a stepping stone for supporting preemptive maintenance decision-making in the long term.

Durability Characteristics of High Performance Shotcrete for Permanent Support of Large Size Underground Space (대형 지하공간의 영구지보재로서 고성능 숏크리트의 내구 특성)

  • Won, Jong-Pil;Kim, Hwang-Hee;Jang, Chang-Il;Lee, Sang-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.701-706
    • /
    • 2007
  • This study evaluated the durability of high-performance shotcrete mixed in the proper proportions using alkali-free and cement mineral accelerators as a permanent support that maintains its strength for the long term. Durability tests were performed the chloride permeability, repeated freezing and thawing, accelerated carbonation, and the effects of salt environments. Test results showed that all the shotcrete mixes included silica fume had low permeability. In addition, after 300 freeze/thaw cycles, the shotcrete mix had excellent freeze/thaw resistance more than the 85% relative dynamic modulus of elasticity. The accelerated carbonation test results were no effect of accelerator type but, the depth of carbonation was greater in the shotcrete mix containing silica fume. No damage was seen in a salt environments. Therefore, the high performance shotcrete mix proportions used in this study showed excellent durability.

Durability Properties of High Volume Blast Furnace Slag Concrete for Application in Nuclear Power Plants (고로슬래그 다량치환 콘크리트의 원전 콘크리트 적용을 위한 내구성능 평가)

  • Seo, Eun-A;Lee, Jang-Hwa;Lee, Ho-Jea;Kim, Do-Gyeum
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.45-52
    • /
    • 2017
  • This study evaluated the durability of nuclear power plant concrete. The main parameters were the water-to-binder ratio and admixture type. The results revealed that high-volume ground granulated blast-furnace slag(GGBS) concrete had lower initial strength, while the strength reached higher after 28 days. On the other hand, the initial strength of fly ash blended concrete was high, but the long-term strength of the robbery was low. The measured durability of GGBS blended concrete was found to be better than that of the existing concrete mix for use in the construction of nuclear power plants. Especially, the GGBS blended concrete was more durable than the fly ash blended concrete in terms of chloride attack, carbonation resistivity and freezing-thawing durability in low compressive strength. The effects of concrete compressive strength according to gamma rays were minor.

A Comprehensive Review of PEMFC Durability Test Protocol of Pt Catalyst and MEA (수소연료전지 백금촉매 및 MEA 장기내구성 평가 방법의 비교)

  • Ham, Kahyun;Chung, Sunki;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.659-666
    • /
    • 2019
  • Proton exchange membrane fuel cells (PEMFCs) generate electricity by electrochemical reactions of hydrogen and oxygen. PEMFCs are expected to alternate electric power generator using fossil fuels with various advantages of high power density, low operating temperature, and environmental-friendly products. PEMFCs have widely been used in a number of applications such as fuel cell vehicles (FCVs) and stationary fuel cell systems. However, there are remaining technical issues, particularly the long-term durability of each part of fuel cells. Degradation of a carbon supported-platinum catalyst in the anode and cathode follows various mechanistic origins in different fuel cell operating conditions, and thus accelerated stress test (AST) is suggested to evaluate the durability of electrocatalyst. In this article, comparable protocols of the AST durability test are intensively explained.

A Study on the Hardening Characteristics of Ground Injection Grout under Various Curing Conditions (다양한 양생조건에서 지반주입 그라우트의 경화특성에 대한 연구)

  • Heo, Hyungseok;Park, Innjoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.11
    • /
    • pp.11-20
    • /
    • 2020
  • For water barrier and reinforcing grout in soft ground, the verification of durability was conducted over the initial and long-term ages under various curing conditions. The grout was made of water glass system, fast-hardening mineral (FHM) system, and acrylic polymer system. There were three types of curing conditions that were tab water curing, artificial seawater curing, and atmospheric curing. And the various tests were performed for each sample by age, uniaxial compressive strength, length change, and weight change. As artificial seawater, MgCl2 and MgSO4 aqueous solutions were prepared and used, respectively. As the test results, the fast-hardening mineral system and acrylic polymer system were cured stably without significant change in durability in tap water and artificial sea water, whereas water glass system showed a very rapid drop in durability under artificial sea water conditions compared to tap water. In atmospheric curing conditions, durability is lowered compared to water curing in all cases, and in particular, the weight loss in the FHM system and water glass system is about 62% and 60%, respectively, resulting in a significant decrease in durability.

Durability Evaluation and Defect Pattern Analysis in Railway Bridge Through Field Investigation (현장조사를 통한 철도 고가교 구조물의 내구성 평가 및 결함 패턴 분석)

  • Kwon, Seung Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.10-20
    • /
    • 2013
  • Because of the defect in design, damage in using period, and deterioration in long term exposure to severe environmental condition, degradation of performance in RC (Reinforced Concrete) structures has occurred. This paper contains durability performance evaluation in railway bridges which covers eight districts through field investigation. For the target structures, durability performance is evaluated and the critical problems in use are derived. Additionally, service lifes for the deteriorated structures are evaluated through Durability-Environment index method based on the results from field investigation, and the results are compared with those from the condition assuming the structures without defect, damage, and deterioration. The target structures which consist of RC T girder, PSC girder, RC box, and Rahmen are investigated and the critical damage patterns are derived. They are evaluated to be cracks in PSC girder end, flexural cracks in PSC girder, crack around EPT anchor, and flexural cracks in RC T girder and RC box. The reasons for the critical patterns are also investigated. This study can be utilized for the repair planning considering the different district and the structure types.

Assessment of strength and durability of bagasse ash and Silica fume concrete

  • Singaram, Jayanthi;Kowsik, Radhika
    • Computers and Concrete
    • /
    • v.17 no.6
    • /
    • pp.801-814
    • /
    • 2016
  • An alternative type of building system with masonry units is extensively used nowadays to reduce the emission of CO2 and embodied energy. Long-term performance of such structures has become essential for sustaining the building technology. This study aims to assess the strength and durability properties of concrete prepared with unprocessed bagasse ash (BA) and silica fume (SF). A mix proportion of 1:3:3 was used to cast concrete cubes of size $100mm{\times}100mm{\times}100mm$ with various replacement levels of cement and tested. The cubes were cast with zero slump normally adopted in the manufacturing of hollow blocks. The cubes were exposed to acid attack, alkaline attack and sulphate attack to evaluate their durability. The mass loss and damages to concrete for all cases of exposures were determined at 30, 60, and 90 days, respectively. Then, the residual compressive strength for all cases was determined at the end of 90 days of durability test. The results showed that there was slight difference in mass loss before and after exposure to chemical attack in all the cases. Though the appearance was slightly different than the normal concrete the residual weight was not affected. The compressive strength of 10% bagasse ash (BA) as a replacement for cement, with 10% SF as admixture resulted in better strength than the normal concrete. Hence concrete with 10% replacement with BA along with 10% SF as admixture was considered to be durable. Besides solid concrete cubes, hollow blocks using the same concrete were casted and tested simultaneously to explore the possibility of production of masonry units.

Durability Analysis and Development of Probability-Based Carbonation Prediction Model in Concrete Structure (콘크리트 구조물의 확률론적 탄산화 예측 모델 개발 및 내구성 해석)

  • Jung, Hyunjun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4A
    • /
    • pp.343-352
    • /
    • 2010
  • Recently, many researchers have been carried out to estimate more controlled service life and long-term performance of carbonated concrete structures. Durability analysis and design based on probability have been induced to new concrete structures for design. This paper provides a carbonation prediction model based on the Fick's 1st law of diffusion using statistic data of carbonated concrete structures and the probabilistic analysis of the durability performance has been carried out by using a Bayes' theorem. The influence of concerned design parameters such as $CO_2$ diffusion coefficient, atmospheric $CO_2$ concentration, absorption quantity of $CO_2$ and the degree of hydration was investigated. Using a monitoring data, this model which was based on probabilistic approach was predicted a carbonation depth and a remaining service life at a variety of environmental concrete structures. Form the result, the application method using a realistic carbonation prediction model can be to estimate erosion-open-time, controlled durability and to determine a making decision for suitable repair and maintenance of carbonated concrete structures.