• Title/Summary/Keyword: Long wave radiation

Search Result 97, Processing Time 0.032 seconds

Vertical Integration of MM-wave MMIC's and MEMS Antennas

  • Kwon, Young-Woo;Kim, Yong-Kweon;Lee, Sang-Hyo;Kim, Jung-Mu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.3
    • /
    • pp.169-174
    • /
    • 2006
  • In this work, we demonstrate a novel compact mechanical beam steering transmitter based on a direct vertical integration of a 2-D MEMS-based mechanical beam steering antenna with a VCO on a single silicon platform. By eliminating the long feed lines and waveguide metal blocks, the radiation pattern has been improved vastly, resulting in an almost ideal pattern at every scan angle. The losses incurred by the feed lines and phase shifters are also eliminated, which allows the transmitter to be implemented using only a single VCO. The system complexity has been greatly reduced with a total module size of only 1.5 cm ${\times}$ 1.5 cm ${\times}$ 0.4 cm. This work demonstrates that RF MEMS can be a key enabling technology for high-level integration.

SST Effect upon Numerical Simulation of Atmospheric Dispersion (대기확산의 수치모의에서 SST 효과)

  • 이화운;원경미;조인숙
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.6
    • /
    • pp.767-777
    • /
    • 1999
  • In the coastal region air flow changes due to the abrupt change of surface temperature between land and sea. So a numerical simulation for atmospheric flow fields must be considered the correct fields of sea surface temperature(SST). In this study, we used variables such as latent heat flux, sensible heat flux, short and long wave radiation of ocean and atmosphere which exchanged across the sea surface between atmosphere and ocean model. We found that this consideration simulated the more precise SST fields by comparing with those of the observated results. Simulated horizontal SST differences in season were 2.5~4$^{\circ}C$. Therefore we simulated the more precise atmospheric flow fields and the movement and dispersion of the pollutants with the Lagrangian particle dispersion model. In the daytime dispersion pattern of the pollutants emitted from ship sources moved toward inland, in the night time moved toward sea by land/sea breeze criculation. But air pollutants dispersion can be affected by inland topography, especially Yangsan and coastal area because of nocturnal wind speed decrease.

  • PDF

Forecasting the Effect of Global Warming on the Water Temperature and Thermal Stratification in Daecheong Reservoir (지구온난화가 대청호 수온 및 성층구조에 미치는 영향예측)

  • Cha, Yoon Cheol;Chung, Se Woong;Yoon, Sung Wan
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.4
    • /
    • pp.329-343
    • /
    • 2013
  • According to previous studies, the increased air temperature can lead to change of thermal stratification structure of lakes and reservoirs. The changed thermal stratification may result in alteration of materials and energy flow. The objective of this study was to predict the effect of climate change on the water temperature and stratification structure of Daecheong Reservoir, located in Geum River basin of Korea, using a three-dimensional(3D) hydrodynamic model(ELCOM). A long-term(100 years) weather data set provided by the National Institute of Meteorological Research(NIMR) was used for forcing the 3D model. The model was applied to two different hydrological conditions, dry year(2001) and normal year(2004). It means that the effect of air temperature increase was only considered. Simulation results showed that the surface water temperature of the reservoir tend to increase in the future, and the establishment of thermal stratification can occur earlier and prolonged longer. As a result of heat flux analysis, the evaporative heat loss can increase in the future than now and before. However, the convective heat loss and net long wave radiation from water surface decreased due to increased air temperature.

Prediction Model of the Outer Radiation Belt Developed by Chungbuk National University

  • Shin, Dae-Kyu;Lee, Dae-Young;Kim, Jin-Hee;Cho, Jung-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.303-309
    • /
    • 2014
  • The Earth's outer radiation belt often suffers from drastic changes in the electron fluxes. Since the electrons can be a potential threat to satellites, efforts have long been made to model and predict electron flux variations. In this paper, we describe a prediction model for the outer belt electrons that we have recently developed at Chungbuk National University. The model is based on a one-dimensional radial diffusion equation with observationally determined specifications of a few major ingredients in the following way. First, the boundary condition of the outer edge of the outer belt is specified by empirical functions that we determine using the THEMIS satellite observations of energetic electrons near the boundary. Second, the plasmapause locations are specified by empirical functions that we determine using the electron density data of THEMIS. Third, the model incorporates the local acceleration effect by chorus waves into the one-dimensional radial diffusion equation. We determine this chorus acceleration effect by first obtaining an empirical formula of chorus intensity as a function of drift shell parameter $L^*$, incorporating it as a source term in the one-dimensional diffusion equation, and lastly calibrating the term to best agree with observations of a certain interval. We present a comparison of the model run results with and without the chorus acceleration effect, demonstrating that the chorus effect has been incorporated into the model to a reasonable degree.

A Wide Dynamic Range NUC Algorithm for IRCS Systems

  • Cai, Li-Hua;He, Feng-Yun;Chang, Song-Tao;Li, Zhou
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1821-1826
    • /
    • 2018
  • Uniformity is a key feature of state-of-the-art infrared focal planed array (IRFPA) and infrared imaging system. Unlike traditional infrared telescope facility, a ground-based infrared radiant characteristics measurement system with an IRFPA not only provides a series of high signal-to-noise ratio (SNR) infrared image but also ensures the validity of radiant measurement data. Normally, a long integration time tends to produce a high SNR infrared image for infrared radiant characteristics radiometry system. In view of the variability of and uncertainty in the measured target's energy, the operation of switching the integration time and attenuators usually guarantees the guality of the infrared radiation measurement data obtainted during the infrared radiant characteristics radiometry process. Non-uniformity correction (NUC) coefficients in a given integration time are often applied to a specified integration time. If the integration time is switched, the SNR for the infrared imaging will degenerate rapidly. Considering the effect of the SNR for the infrared image and the infrared radiant characteristics radiometry above, we propose a-wide-dynamic-range NUC algorithm. In addition, this essasy derives and establishes the mathematical modal of the algorithm in detail. Then, we conduct verification experiments by using a ground-based MWIR(Mid-wave Infared) radiant characteristics radiometry system with an Ø400 mm aperture. The experimental results obtained using the proposed algorithm and the traditional algorithm for different integration time are compared. The statistical data shows that the average non-uniformity for the proposed algorithm decreased from 0.77% to 0.21% at 2.5 ms and from 1.33% to 0.26% at 5.5 ms. The testing results demonstrate that the usage of suggested algorithm can improve infrared imaging quality and radiation measurement accuracy.

Resonant Characteristics in Rectangular Harbor with Narrow Entrance (2.Effects of Entrance Energy Loss) (개구부가 좁은 직사각형 항만의 공진 특성 (2.항입구 에너지 손실의 영향))

  • 정원무;박우선;서경덕;채장원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.4
    • /
    • pp.216-230
    • /
    • 1999
  • A Galerkin finite element model for the analysis of harbor oscillation has been developed based on the extended mild-slope equation. Infinite elements are used to accomodate the radiation condition at infinity and joint elements to treat the matching conditions at the harbor entrance which include the energy loss due to flow separation. The numerical tests for rectangular harbors with fully or partially open entrances show that the energy loss at the harbor entrance considerably reduces the the amplification ratios at the innermost parts of the harbors and that the amplification ratios decrease considerably with increasing incident wave heights and jet lengths at the harbor entrance. Application of the model to the Gamcheon harbor show that when the incident wave amplitude is small the amplification ratios rather increase when the entrance energy loss is included than when ignored because of the shift of the resonance periods. Even though the entrance energy loss was insignificant for the measured long-period incident waves, it would be of great importance if the incident waves were large as in the attack of tsunamis. The resonance period of the Helmholtz mode at the Gamcheon Harbor was calculated to be 31 minutes, which agrees well with the measured one between 27 and 33.3 minutes. The measured resonance periods between 9.4 and 12.1 minutes and 5.2 and 6.2 minutes were also calculated by the numerical model as 10.4 minutes and 6.6 or 5.6 minutes, indicating good performance of the model. On the other hand, it was shown that a variety of oscillation modes exists in the Gamcheon Harbor and lateral resonances of considerable amplification ratios also exist at the periods of 3.6 and 1.6 minutes as in the Young-II Bay.

  • PDF

Evaluation of DNA Damage Using Microwave Dielectric Absorption Spectroscopy

  • Hirayama, Makoto;Matuo, Youichirou;Sunagawa, Takeyoshi;Izumi, Yoshinobu
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.339-343
    • /
    • 2016
  • Background: Evaluation of deoxyribonucleic acid (DNA)-strand break is important to elucidate the biological effect of ionizing radiations. The conventional methods for DNA-strand break evaluation have been achieved by Agarose gel electrophoresis and others using an electrical property of DNAs. Such kinds of DNA-strand break evaluation systems can estimate DNA-strand break, according to a molecular weight of DNAs. However, the conventional method needs pretreatment of the sample and a relatively long period for analysis. They do not have enough sensitivity to detect the strand break products in the low-dose region. Materials and Methods: The sample is water, methanol and plasmid DNA solution. The plasmid DNA pUC118 was multiplied by using Escherichia coli JM109 competent cells. The resonance frequency and Q-value were measured by means of microwave dielectric absorption spectroscopy. When a sample is located at a center of the electric field, resonance curve of the frequency that existed as a standing wave is disturbed. As a result, the perturbation effect to perform a resonance with different frequency is adopted. Results and Discussion: The resonance frequency shifted to higher frequency with an increase in a concentration of methanol as the model of the biological material, and the Q-value decreased. The absorption peak in microwave power spectrum of the double-strand break plasmid DNA shifted from the non-damaged plasmid DNA. Moreover, the sharpness of absorption peak changed resulting in change in Q-value. We confirmed that a resonance frequency shifted to higher frequency with an increase in concentration of the plasmid DNA. Conclusion: We developed a new technique for an evaluation of DNA damage. In this paper, we report the evaluation method of DNA damage using microwave dielectric absorption spectroscopy.

Cross-sectional Radiation Type Mixer into the Boundary Surface using PMN-PT for Micromixing (마이크로믹서에의 응용을 위해 PMN-PT를 이용한 경계면과 수직방향 방사형 믹서)

  • Heo Pil Woo;Yoon Eui Soo;Kho Kwang Sik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.1
    • /
    • pp.33-37
    • /
    • 2005
  • A micromixer plays an important role in Bio-MEMS or μ-TAS. Mixing is generally generated by turbulence and interdiffusion of two fluids. Because of low Reynolds number values (Re << 2000) within microchannels, it is difficult to generate turbulence, and consequently mixing mainly depends on interdiffusion. So, channel distance is often prohibitively long to mix two different fluids properly. To reduce this mixing length, we proposed a new mixer for micromixing in which two fluids were effectively mixed by an ultrasonic wave generated by PMN-PT. The ultrasonic wave was radiated into a chamber In the cross-sectional direction into the boundary surface formed by two fluids. The two fluids were positioned one on top of the other. The mixing state was measured by observing the color of samples due to the reaction of NaOH and phenolphthalein.

A Study on the Heat Budget in the South Eastern Area of the Yellow Sea (황해 남동해역에서의 열수지에 관한 연구)

  • 이현철;안희수
    • 한국해양학회지
    • /
    • v.22 no.4
    • /
    • pp.217-227
    • /
    • 1987
  • The heat budget of the south eastern region (33$^{\circ}$N-36$^{\circ}$N, 120$^{\circ}$E-125$^{\circ}$E) of the Yellow Sea was calculated by using the meteorological and oceanographical data. The sensibly heat, the evaporation heat and the long wave back radiation have annual variation and increases toward south with strong gradient along the Cheju channel in winter, but they all show tendency to decrease toward eastern coastal area in summer. The area is roughly divided into three parts, the central part, the coastal part and the southern part, according to the characteristics ovariation and distribution patterns of the exchanged heats. The amplitude of the annual variation of total heat exchange in the southern part is very large compare to those of the central and coastal part. The studied area is appeared to be heated mainly by the evaporation heat and the sensoble heat, based on the results of this study.

  • PDF

The Response of soil surface heat budget to the precipitation (지표면 열수지의 강수응답성에 관한 연구)

  • 황수진;진병화
    • Journal of Environmental Science International
    • /
    • v.3 no.2
    • /
    • pp.89-100
    • /
    • 1994
  • It is very important to assess accurately the terms which are included in the heat budget equation of soil surface because they are used in the UM and miso-scale circulation modeling as well as in the micrometeorological studies. Each terms in the heat budget equation change according to the soil moisture content. So, it is necessary to specify clearly the relations between soil moisture content and these terms. Special experiment with micrometeorological measurements was executed to study these relations at Environmental Research Center of Tsukuba University, Japan. The results are as follow: 1. The soil moisture contents of 1 cm and 4 cm depth are oscillated with one day Period in drying process and the amplitude of variation of 1 cm depth is greater than that of 4 cm. 2. Increase in soil moisture contents due to precipitation result in decrease of albedo with step function. 3. Sensible heat is in reverse proportion to the soil moisture content and latent heat is in direct proportion to it. Latent heat is more sensitive than sensible heat according to the soil moisture variation. Net long wave radiation have high correlation with soil moisture. 4. Comparing with the radiative term with the flux term in wetting process due to precipitation, the energy transfer of the aero and thermodynamic flux is greater than that of the radiative heat flux.

  • PDF