• Title/Summary/Keyword: Long wave infrared

Search Result 39, Processing Time 0.027 seconds

Design and Analysis of a 10× Optical Zoom System for an LWIR Camera

  • Ok, Chang-Min;Park, Sung-Chan
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.574-581
    • /
    • 2014
  • This paper presents the design and evaluation of the optical zoom system for an LWIR camera. The 12.8operating wavelength range of this system is from $7.7{\mu}m$ to $12.8{\mu}m$. Through a paraxial design and optimization process, we have obtained the extended four-group inner-focus zoom system with focal lengths of 10 to 100 mm, which consists of the six lenses including four aspheric surfaces and two diffractive surfaces. The diffractive lenses were used to balance the higher-order aberrations, and its diffraction properties were evaluated by scalar diffraction theory. We have calculated the polychromatic integrated diffraction efficiency and the MTF drop generated by background noise. The f-number of the zoom system is F/1.4 at all positions. Fields of view are given by $51.28^{\circ}{\times}38.46^{\circ}$ at wide field and $5.50^{\circ}{\times}4.12^{\circ}$ at narrow field positions. In conclusion, this design procedure results in a $10{\times}$ compact zoom lens system useful for an LWIR camera.

Multimodal Image Fusion with Human Pose for Illumination-Robust Detection of Human Abnormal Behaviors (조명을 위한 인간 자세와 다중 모드 이미지 융합 - 인간의 이상 행동에 대한 강력한 탐지)

  • Cuong H. Tran;Seong G. Kong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.637-640
    • /
    • 2023
  • This paper presents multimodal image fusion with human pose for detecting abnormal human behaviors in low illumination conditions. Detecting human behaviors in low illumination conditions is challenging due to its limited visibility of the objects of interest in the scene. Multimodal image fusion simultaneously combines visual information in the visible spectrum and thermal radiation information in the long-wave infrared spectrum. We propose an abnormal event detection scheme based on the multimodal fused image and the human poses using the keypoints to characterize the action of the human body. Our method assumes that human behaviors are well correlated to body keypoints such as shoulders, elbows, wrists, hips. In detail, we extracted the human keypoint coordinates from human targets in multimodal fused videos. The coordinate values are used as inputs to train a multilayer perceptron network to classify human behaviors as normal or abnormal. Our experiment demonstrates a significant result on multimodal imaging dataset. The proposed model can capture the complex distribution pattern for both normal and abnormal behaviors.

Radiative Properties of Greenhouse Gases, Aerosols and Clouds in Korea

  • Moon, Yun-Seob;Bang, So-Young;Oh, Sung-Nam
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.51-54
    • /
    • 2003
  • We analyzed radiative properties of aerosols, $CO^{2}$ and clouds using Optical Properties of Aerosols and Clouds(OPAC) and the Column Radiation Model (CRM). From OPAC, if the soot component is disregarded, dust-like components depict the highest extinction values in the solar spectral range and the lowest. single scattering albedoes, which are attributable to the presence of large particles. In the dust aerosol, the high absorptivity in the infrared may induce a warming of the lower atmospheric layer in the nighttime. The radiative properties of aerosols, clouds and double $CO^{2}$ using the CRM model at Seoul (37N, 127.4 E) on 3 April 2003 were calculated. The solar zenith angle is 65˚ and the surface albedo is 0.1836 during the clear day. The aerosol optical depth change 0.14 to 1.7, which is derived during Asian dust days in Korea. At this time, abedo by aerosols is considered as 0.3. In cloudy condition, the short wave cloud forcing on both the TOA and the surface is -193.89 $Wm^{-2}$ and -195.03 $Wm^{-2}$, respectively, and the long wave cloud forcing is 19.58 $Wm^{-2}$ and 62.08 $Wm^{-2}$, respectively. As a result, the net radiative cloud forcing is -174.31 $Wm^{-2}$ and -132.95 $Wm^{-2}$, respectively. We calculate also radiative heating rates by double $CO^{2}$ during the clear day. The $CO^{2}$ volumn mixing ratio is 3.55E-4.

  • PDF

Effects of thermal annealing of AlN thin films deposited on polycrystalline 3C-SiC buffer layer (다결정 3C-SiC 버퍼층위 증착된 AlN 박막의 열처리 효과)

  • Hong, Hoang-Si;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.112-112
    • /
    • 2009
  • In this study, the effect of a long post-deposition thermal annealing(600 and 1000 $^{\circ}C$) on the surface acoustic wave (SAW) properties of polycrystalline (poly) aluminum-nitride (AlN) thin films grown on a 3C-SiC buffer layer was investigates. The poly-AlN thin films with a (0002) preferred orientation were deposited on the substrates by using a pulsed reactive magnetron sputtering system. Experimental results show that the texture degree of AlN thin film was reduced along the increase in annealing temperature, which caused the decrease in the electromechanical coupling coefficient ($k^2$). The SAW velocity also was decreased slightly by the increase in root mean square (RMS) roughness over annealing temperature. However, the residual stress in films almost was not affect by thermal annealing process due to small lattice mismatch different and similar coefficient temperature expansion (CTE) between AlN and 3C-SiC. After the AlN film annealed at 1000 $^{\circ}C$, the insertion loss of an $IDT/AlN/3C-SiC/SiO_2/Si$ structure (-16.44 dB) was reduced by 8.79 dB in comparison with that of the as-deposited film (-25.23 dB). The improvement in the insertion loss of the film was fined according to the decrease in the grain size. The characteristics of AlN thin films were also evaluated using Fourier transform-infrared spectroscopy (FT-IR) spectra and X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) images.

  • PDF

Spectroscopic Characteristics of Ruby from Gorno-Badakhshan, Tajikistan (타지키스탄 고르노바다흐샨주 지역 루비에 대한 분광학적 특성 연구)

  • Chung, Sol Lim;Park, Jong Wan
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Physical properties, XRF, UV-Vis, FTIR studies were carried out in order to characterize gemological features of ruby from Tajikistan. Fluorescence reaction of the Tajikistan ruby to short wave ultraviolet was moderate to very strong in red and long wave ultraviolet rays was weakly detected. UV-visible analysis strong absorption bands at 468.5, 475, 476.5 nm and broaden bands at 550 nm were observed for ruby due to $Cr^{3+}$. According to FT-IR analysis, all rubies from Tajikistan showed the similar patterns and kaolinite peaks at 3500, 3617, 3630, $3677cm^{-1}$ and boehmite broaden absorption bands at 3085 and $3320cm^{-1}$. Inclusions in Tajikistan ruby are observed solid inclusions, negative crystals, needle and silk inclusions. These distinctive characteristics mentioned above can be used to identify the locality and source of ruby stones from Tajikistan.

Frequency Doubling in LiIO3 Crystals by the Ring Enhancement Cavity (고리형 증폭 공진기에 의한 LiIO3결정에서 제2조화파 발생)

  • Kim, Sang-Gee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.4 no.2
    • /
    • pp.45-49
    • /
    • 1999
  • The second harmonic, wavelength is 397nm, of the continuous wave diode laser, whose maximum power is 35mW, was generated in $LiIO_3$ crystals in a ring enhancement cavity. 5mm- and 10mm-long crystals cut $43.21^{\circ}$ for optic axis were used in this experiment. Both surfaces of those were anti-reflection coated for 794nm. In case the crystal was inserted into the cavity, the condition of separation between two concave mirrors for the optimum mode matching was found. The conversion efficiency of second harmonic generation was increased by the resonant enhancement of pumping power in the ring enhancement cavity, and the frequency of diode laser was locked to that of the counter-propagation mode generated from the surface of crystal. When the pumping power was 28 mW, the infrared buildup factor was about 45 without the crystal, and 14 with the crystal due to the transmission loss of crystal. The maximum second harmonic powers of $1.5{\mu}W$ and $6.6{\mu}W$ were obtained, and corresponding conversion efficiencies were $(6.584{\pm}0.56){\times}10^{-3}$%, $2.6{\pm}0.21){\times}10%{-2}$% in 5mm- and 10mm-long $LiIO_3$, respectively.

  • PDF

SOMANGNET: SMALL TELESCOPE NETWORK OF KOREA

  • Im, Myungshin;Kim, Yonggi;Lee, Chung-Uk;Lee, Hee-Won;Pak, Soojong;Shim, Hyunjin;Sung, Hyun-Il;Kang, Wonseok;Kim, Taewoo;Heo, Jeong-Eun;Hinse, Tobias C.;Ishiguro, Masateru;Lim, Gu;Ly, Cuc T.K.;Paek, Gregory S.H.;Seo, Jinguk;Yoon, Joh-na;Woo, Jong-Hak;Ahn, Hojae;Cho, Hojin;Choi, Changsu;Han, Jimin;Hwang, Sungyong;Ji, Tae-Geun;Lee, Seong-Kook J.;Lee, Sumin;Lee, Sunwoo;Kim, Changgon;Kim, Dohoon;Kim, Joonho;Kim, Sophia;Jeong, Mankeun;Park, Bomi;Paek, Insu;Kim, Dohyeong;Park, Changbom
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.3
    • /
    • pp.89-102
    • /
    • 2021
  • Even in an era where 8-meter class telescopes are common, small telescopes are considered very valuable research facilities since they are available for rapid follow-up or long term monitoring observations. To maximize the usefulness of small telescopes in Korea, we established the SomangNet, a network of 0.4-1.0 m class optical telescopes operated by Korean institutions, in 2020. Here, we give an overview of the project, describing the current participating telescopes, its scientific scope and operation mode, and the prospects for future activities. SomangNet currently includes 10 telescopes that are located in Australia, USA, and Chile as well as in Korea. The operation of many of these telescopes currently relies on operators, and we plan to upgrade them for remote or robotic operation. The latest SomangNet science projects include monitoring and follow-up observational studies of galaxies, supernovae, active galactic nuclei, symbiotic stars, solar system objects, neutrino/gravitational-wave sources, and exoplanets.

Prediction of Germination of Korean Red Pine (Pinus densiflora) Seed using FT NIR Spectroscopy and Binary Classification Machine Learning Methods (FT NIR 분광법 및 이진분류 머신러닝 방법을 이용한 소나무 종자 발아 예측)

  • Yong-Yul Kim;Ja-Jung Ku;Da-Eun Gu;Sim-Hee Han;Kyu-Suk Kang
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.2
    • /
    • pp.145-156
    • /
    • 2023
  • In this study, Fourier-transform near-infrared (FT-NIR) spectra of Korean red pine seeds stored at -18℃ and 4℃ for 18 years were analyzed. To develop seed-germination prediction models, the performance of seven machine learning methods, namely XGBoost, Boosted Tree, Bootstrap Forest, Neural Networks, Decision Tree, Support Vector Machine, PLS-DA, were compared. The predictive performance, assessed by accuracy, misclassification, and area under the curve (0.9722, 0.0278, and 0.9735 for XGBoost, and 0.9653, 0.0347, and 0.9647 for Boosted Tree), was better for the XGBoost and decision tree models when compared with other models. The 54 wave-number variables of the two models were of high relative importance in seed-germination prediction and were grouped into six spectral ranges (811~1,088 nm, 1,137~1,273 nm, 1,336~1,453 nm, 1,666~1,671 nm, 1,879~2,045 nm, and 2,058~2,409 nm) for aromatic amino acids, cellulose, lignin, starch, fatty acids, and moisture, respectively. Use of the NIR spectral data and two machine learning models developed in this study gave >96% accuracy for the prediction of pine-seed germination after long-term storage, indicating this approach could be useful for non-destructive viability testing of stored seed genetic resources.

Thermal Environments of Children's Parks during Heat Wave Period (폭염 시 어린이공원의 온열환경)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.6
    • /
    • pp.84-97
    • /
    • 2016
  • This study was to investigate the user's thermal environments of the children's parks according to pavements and sunscreen types during periods of heat waves. The measurements were conducted at the sand pits, rubber chip pavement, shelters, and green shade ground of the two children's parks located in Jinju, Korea(Chilam: $N\;35^{\circ}11^{\prime}1.4{^{\prime}^{\prim}}$, $E\;128^{\circ}5^{\prime}31.7{^{\prime}^{\prime}}$, elevation 38m, Gaho: $N\;35^{\circ}09^{\prime}56.8{^{\prime}^{\prime}}$, $E\;128^{\circ}6^{\prime}41.1{^{\prime}^{\prime}}$, elevation 24m) over three days during 11-13, August, 2016. The highest ambient air temperatures at the Jinju Meteorological Office during the three measurement days were $35.9{\sim}36.8^{\circ}C$, which corresponded with the extremely hot weather. A series of experiments measured air temperature, relative humidity, wind velocity, black globe temperature, and long-wave and short-wave radiation of the six directions 0.6 m above ground level. The wet bulb globe temperature(WBGT) and the universal thermal climatic index(UTCI) were used to evaluate thermal stress. Surface temperature images of the play equipment were also taken using infrared thermography. Surface temperatures of the play equipment and grounds were used to evaluate burn risk through contact with playground materials. The results showed the following. The maximum air temperatures averaged over 1-hour period for three days were $36.6{\sim}39.4^{\circ}C$. The sun shades reduced those temperatures by up to $2.8^{\circ}C$(green shade) and $1.0^{\circ}C/2.3^{\circ}C$(shelters). The minimum relative humidity values averaged over 1-hour period for three days were 44~50%. The sun shades increased those humidity values by up to 6%(green shade) and 4%/6%(shelters). The risk of heat related illness at the measurement sites of the children's parks were extreme and high in the daytime hours. The maximum WBGT values averaged over a 30-minute period for three days were $31.2{\sim}33.6^{\circ}C$. The sun shades reduced those WBGT values by up to $2.4^{\circ}C$(green shade) and $0.5^{\circ}C/2.1^{\circ}C$(shelters) compared to sandpits, but would not block the risk of heat related illness in the daytime hours. The category of heat stress at the measurement sites of the children's parks were extreme and very strong in the daytime hours. The maximum UTCI values averaged over a 30-minute period for three days were $39.9{\sim}48.1^{\circ}C$. The sun shades reduced those UTCI values by up to $7.8^{\circ}C$(green shade) and $4.1^{\circ}C/8.2^{\circ}C$(shelters) compared to sandpits, but could not lower heat stress category from extreme and very strong to strong and moderate in the daytime hours. According to the burn threshold criteria when skin was in contact with playground materials, the maximum surface temperature of the stainless steels($70.8^{\circ}C$) surpassed three seconds $60^{\circ}C$ threshold for uncoated steel, that of the rubber chip($76.5^{\circ}C$) surpassed five seconds $74^{\circ}C$ threshold for the plastic, that of the plastic slide($68.5^{\circ}C$) and seats($71.0^{\circ}C$) surpassed the one min $60^{\circ}C$ threshold for plastic, respectively. The surface temperatures of shaded play equipment were lower approximately $20^{\circ}C$ than those of play equipment exposed to the sun. Therefore, sun shades can block the risk of burns in daytime hours. Because of the extreme and high risk of heat related illness and extreme and high heat stress at the children's parks during periods of heat waves, parents and administrators must protect children from the use of playgrounds. The risk of burn when contact with play equipments and grounds at the children's parks during periods of heat waves, was very high. The sun shades are essential to block the risk of burn from play equipments and grounds at the children's parks during heat waves.