• 제목/요약/키워드: Long term strength

검색결과 902건 처리시간 0.027초

자동차용 엔지니어링 플라스틱의 접합조건 (Joining Condition of Engineering Plastic for Car)

  • 이정현;이우람
    • 한국정밀공학회지
    • /
    • 제29권1호
    • /
    • pp.96-102
    • /
    • 2012
  • The current establishment of car engineering plastic piping polyethylene (PE) tube used as bonding state or part of the health or safety of fusion is very important. A part of these fusion methods to determine the soundness of the short-term trials and long-term tests can be largely classified. Typical tests included short-term strength, tensile strength, impact strength, compressive strength, resiliency and compression. Polyethylene (PE) pipes installed in the domestic terms of overall penetration rate of 45% has been used. However, polyethylene (PE) pipes have reliability problems, and these occurs mostly in part by defective welding. Therefore, the test is necessary for safety. Non-destructive methods (ultrasonic testing) are difficult to be used. Therefore, Polyethylene (PE) pipe are used. Fusion of thses materilas is necessary in these field however, its technical, and basic research has not been studied well. In this research, short-term strength of welding parts, its tensile strength, hardness, fatigue, and microstructure have been analyzed to find the optimum process conditions to improve mechanical properties.

플라스틱 배관의 접합 조건에 관한 연구 (A Study of Welding Conditions for Plastic Piping)

  • 이철구;이우람;박철양
    • 한국생산제조학회지
    • /
    • 제20권5호
    • /
    • pp.564-569
    • /
    • 2011
  • The current establishment of city gas piping polyethylene (PE) tube used as bonding state or part of the health or safety of fusion is very important. A part of these fusion methods to determine the soundness of the short-term trials and long-term tests can be largely classified. Typical tests include short-term strength, tensile strength, impact strength, compressive strength, resiliency and compression. Polyethylene (PE) pipes installed in the domestic terms of overall penetration rate of 45% has been used. However, polyethylene (PE) pipes have reliability problems, and these occurs mostly in part by defective welding. Therefore, the test is necessary for safety. Non-destructive methods (ultrasonic testing) are difficult to be used. Therefore, Polypropylene copolymer (PP-C), polypropylene homopolymer (PP-H), and polyethylene (PE) pipe are used. Fusion of these materials is necessary in these field however, its technical, and basic research has not been studied well. In this research, short-term strength of welding parts, its tensile strength, hardness, fatigue, and microstructure have been analyzed to find the optimum process conditions to improve mechanical properties.

부순모래 콘크리트의 강도 특성에 관한 연구 (A Study on the Strength Characteristics of Crushed Sand Concrete)

  • 김상태;김태영;백동일;장희석;김명식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.429-432
    • /
    • 2005
  • An investigation for long-term strength characteristics of crushed sand concrete using crushed sands produced in Yang-san, Kim-hae and Jin-hae that can assume to respectively represent eastern, middle and western suburb of Busan was carried out. Cases were divided as variation of blend ratio of crushed sand (50, 60, 70, 80, 90, 100$\%$) and area. Compressive strength, unit weight and strain in age of 28, 60, 90, 180, 356 days were measured in each case. Compressive strength, unit weight and modulus of elasticity were increased as time goes by and they are expected to keep on increasing in long-term age as well.

  • PDF

Long-term and Short-term AC Treeing Breakdown of Epoxy/Micro-Silica/Nano-Silicate Composite in Needle-Plate Electrodes

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권5호
    • /
    • pp.252-255
    • /
    • 2012
  • In order to characterize insulation properties of epoxy/micro-silica/nano-silicate composite (EMNC), long-term and short-term AC treeing tests were carried out undr non-uniform electric field generated between needle-plate electrodes. In a long-term test, a 10 kV (60 Hz) electrical field was applied to the specimen positioned between the electrodes with a distance of 2.7 mm in an insulating oil bath at $30^{\circ}C$, and a typical branch type electrical tree was observed in the neat epoxy resin and breakdown took place at 1,042 min after applying the 10 kVelectrical field. Meanwhile, the spherical tree with the tree length of $237{\mu}m$ was seen in EMNC-65-0.3 at 52,380 min (36.4 day) and then the test was stopped because the tree propagation rate was too low. In the short-term test, an electrial field was applied to a 3.5 mm-thick specimen at an increasing voltage rate of 0.5 kV/s until breakdown in insulating oil bath at $30^{\circ}C$ and $130^{\circ}C$, and the data was estimated by Weibull statistical analysis. The electrical insulation breakdown strength for neat epoxy resin was 1,763 kV/mm at $30^{\circ}C$, while that for EMNC-65-0.3 was 2,604 kV/mm, which was a modified value of 47%. As was expected, the breakdown strength decreased at higher test temperatures.

바닥하중과 압축력을 받는 플랫 플레이트의 장기거동을 고려한 모멘트 증대법 (Moment Magnifier Method for Long-term Behavior of Flat Plate Subjected to In-Plane Compressive and Transverse Loads)

  • 최경규;박홍근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.211-216
    • /
    • 2000
  • Numerical studies were carried out to develop the moment magnifier method for long-term behavior of flat plates, subjected to combined in-plane compressive and transverse loads. Nonlinear finite element analyses were performed for the numerical studies. Through the numerical studies, the long term behavior of the flat plate subjected to uniform or nonuniform floor load was investigated, and creep effects on the degradation of strength and stiffness of the slabs were examined. As the result, the creep factor was developed to epitomizes with creep effect on the flat plate. The moment magnifier method using the creep factor was developed for long-term behavior of flat plates. Also, the design examples are shown for verification of proposed design method.

  • PDF

Evaluation of long term shaft resistance of the reused driven pile in clay

  • Cui, Jifei;Rao, Pingping;Wu, Jian;Yang, Zhenkun
    • Geomechanics and Engineering
    • /
    • 제29권2호
    • /
    • pp.171-182
    • /
    • 2022
  • Reusing the used pile has not yet been implemented due to the unpredictability of the bearing capacity evolution. This paper presents an analytic approach to estimate the sides shear setup after the dissipation of pore pressure. Long-term evolution of adjacent soil is simulated by viscoelastic-plastic constitutive model. Then, an innovative concept of quasi-overconsolidation is proposed to estimate the strength changes of surrounding soil. Total stress method (α method) is employed to evaluate the long term bearing capacity. Measured data of test piles in Louisiana and semi-logarithmic time function are cited to validate the effectiveness of the presented method. Comparisons illustrate that the presented approach gives a reasonably prediction of the side shear setup. Both the presented method and experiment show the shaft resistance increase by 30%-50%, and this highlight the potential benefit of piles reutilization.

구자를 장기간(長期間) 투여(投與) 했을 때 생쥐의 근피로(筋疲勞)와 근력(筋力)에 미치는 영향(影響) (Long Term Effect of Allii tuberosi semen on Muscle Fatigue and Muscular Strength)

  • 조정훈;장준복;이경섭;이창훈
    • 대한한방부인과학회지
    • /
    • 제20권3호
    • /
    • pp.81-90
    • /
    • 2007
  • Purpose: This study was conducted to investigate the muscle anti-fatigue effects of Allii tuberosi semen after long term administration. Materials and Methods: 4-6 weeks old ICR mice were used in this study and we administered the water soluble extracts of Allii tuberosi semen in the concentration of 1, 10 and 100mg/0.3ml to each 5 mice (ATS group) and same volume of normal saline was administered to 5 mice (control group) once a day for 90 or 120 days. After the administration we performed the swimming exercise test and the grip strength test. And we measured the concentration of glucose and the activity of lactate dehydrogenase in plasma regarded as biochemical indicator related with the muscular fatigue. Results: In swimming exercise test, all ATS groups showed increased time compared with relative control group after 90 days administration. But after 120 days adminstration 10 and 100mg/0.3ml ATS groups showed increased results. In grip strength test, all ATS group increased grip strength after 90 days administration and 10mg/0.3ml ATS group showed increased result after 120 days administration. All the results of plasma glucose didn't showed statistically significant difference after 90 and 120 days administration. In the plasma concentration of activity level of lactate dehydrogenase, 1mg/0.3ml and 10mg/0.3ml ATS groups showed decreased concentration compared with relative control group after 90 days administration. But after 120 days adminstration 1mg/0.3ml ATS groups showed decreased results. Conclusion: From this study we could find the anti-fatigue effect of Allii tuberosi semen in the muscle strength related test.

  • PDF

The effect of active and passive confining pressure on compressive behavior of STCC and CFST

  • Nematzadeh, Mahdi;Fazli, Saeed
    • Advances in concrete construction
    • /
    • 제9권2호
    • /
    • pp.161-171
    • /
    • 2020
  • In this paper, an experimental study was conducted on the compressive behavior of steel tube confined concrete (STCC) and concrete-filled steel tube (CFST) columns with active and passive confinement. To create active confinement in the STCC and CFST specimens, an innovative method was used in this study, in which by applying pressure on the fresh concrete, the steel tube was laterally pretensioned and the concrete core was compressed simultaneously. Of the benefits of this technique are improving the composite column behavior, without the use of additives and without the need for vibration, and achieving high prestressing levels. To achieve lower and higher prestressing levels, short and long term pressures were applied to the specimens, respectively. Nineteen STCC and CFST specimens in three groups of passive, short-term active, and long-term active confinement were subjected to axial compression, and their mechanical properties including the compressive strength, modulus of elasticity and axial strain were evaluated. The results showed that the proposed method of prestressing the STCC columns led to a significant increase in the compressive strength (about 60%), initial modulus of elasticity (about 130%) as well as a significant reduction in the axial strain (about 45%). In the CFST columns, the prestressing led to a considerable increase in the compressive strength, a small effect on the initial and secant modulus of elasticity and an increase in the axial strain (about 55%). Moreover, increased prestressing levels negligibly affected the compressive strength of STCCs and CFSTs but slightly increased the elastic modulus of STCCs and significantly decreased that of CFSTs.

시공하중 및 균열 효과를 고려한 플랫 플레이트의 장기 처짐에 대한 변수 연구 (Parametric Study on Long-Term Deflections of Flat Plates Considering Effects of Construction Loads and Cracking)

  • 최승민;엄태성;김재요
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.44-54
    • /
    • 2012
  • 보에 의해 지지되지 않는 RC 플랫 플레이트는 강도 조건이 아닌 사용성의 지배를 받을 수 있다. 특히, 양생 초기의 슬래브에 발생하는 과하중과 인장 균열은 시공 중 플랫 플레이트에 심각한 처짐을 발생시키며, 시공 순서와 슬래브 처짐의 영향은 플랫 플레이트에서 중요한 요소이다. 이 연구에서는 시공단계, 콘크리트의 균열 및 장기처짐 효과를 고려하여 슬래브의 처짐을 산정한다. 제안된 방법을 사용하여 플랫 플레이트의 처짐에 대한 변수연구가 실시되었다. 슬래브의 시공주기, 동바리 지지층수, 인장 및 압축철근, 콘크리트 강도, 시공 활하중, 슬래브 두께를 변수로 하여, 시공 중 즉시처짐과 시공 완료 후 장기처짐에 대하여 조사하였다. 산정 결과는 건축구조설계기준에서 제시된 사용성 제한값과 비교하였다.

Prediction of compressive strength of concrete based on accelerated strength

  • Shelke, N.L.;Gadve, Sangeeta
    • Structural Engineering and Mechanics
    • /
    • 제58권6호
    • /
    • pp.989-999
    • /
    • 2016
  • Moist curing of concrete is a time consuming procedure. It takes minimum 28 days of curing to obtain the characteristic strength of concrete. However, under certain situations such as shortage of time, weather conditions, on the spot changes in project and speedy construction, waiting for entire curing period becomes unaffordable. This situation demands early strength of concrete which can be met using accelerated curing methods. It becomes necessary to obtain early strength of concrete rather than waiting for entire period of curing which proves to be uneconomical. In India, accelerated curing methods are used to arrive upon the actual strength by resorting to the equations suggested by Bureau of Indian Standards' (BIS). However, it has been observed that the results obtained using above equations are exaggerated. In the present experimental investigations, the results of the accelerated compressive strength of the concrete are used to develop the regression models for predicting the short term and long term compressive strength of concrete. The proposed regression models show better agreement with the actual compressive strength than the existing model suggested by BIS specification.