• Title/Summary/Keyword: Long period standing wave

Search Result 6, Processing Time 0.02 seconds

Field observation of sediment suspension in the surf zone (쇄파대의 저질부유에 관한 현지관측)

  • 신승호;율산서소
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.141-146
    • /
    • 2003
  • Time seres of suspended sediment concentration, surface elevation and velocity were measured and analysed to investigate the role of waves and the predominance of infra-gravity wave component for sediment suspension phenomena in the surf zone. For the investigation in detail, we adopted the cross spectral analysis method between sediment concentration and the characteristic values of wave, and ensemble average analysis method about long-period wave component, which is dominant to sediment suspension in the measurement point. The obtained results are summarized as follows: 1) The relationship between sediment concentration and the characteristic values of wave is stronger for the long-period standing wave components(about 60s and 30s) than the long wave components(about 100s), which have the most energetic power, 2) and also, it is cleared that sediment concentration is increased in the case of the phase, the velocity components of the first mode long-period standing wave(60sec) were accelerated toward on-shore direction, that is, the water surface in offshore side is higher than on-shore side.

  • PDF

Field observation of sediment suspension in the surf zone (쇄파대의 저질부유에 관한 현지관측)

  • Shin, Seung-Ho;Kuriyama, Yoshiaki
    • Journal of Navigation and Port Research
    • /
    • v.27 no.4
    • /
    • pp.455-463
    • /
    • 2003
  • Time series of suspended sediment concentration, surface elevation and velocity were measured and analysed to investigate the role of waves and the predominance of infra-gravity wave component for sediment suspension phenomena in the surf zone. For the investigation in detail, we adopted the cross spectral analysis method between suspended sediment concentration and the characteristic values of wave, and ensemble average analysis method about long-period wave component, which is dominant to sediment suspension in the measurement point. The obtained results are summarized as follows: 1)The relationship between suspended sediment concentration and the characteristic values of wave is stronger for the long-period standing wave components(about 60s and 30s where the nodal point of the first mode and the anti-nodal point of the second mode are located at the measurement point, respectively) than the long wave components(about 100s), which have the most energetic power, 2) and also, it is cleared that suspended sediment concentration is increased in the case of the phase, the velocity components of the first mode long-period standing wave(60sec) were accelerated toward on-shore direction, that is, the water surface in offshore side is higher than on-shore side.

Characteristics of Wave Response in a 'Y' Shape Water Channel Resonator Using Resonance of Internal Fluid (내부유체 공진을 이용한 'Y'자 수로형 공명구조물내 파도응답 특성)

  • Kim, Jeongrok;Cho, Il Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.170-179
    • /
    • 2019
  • In this study, the wave responses in a 'Y'shape water channel resonator for amplifying wave energy of a low density has been investigated. A water channel resonator is composed of the long channel and wave guider installed at the entrance. If the period of the incident waves coincides with the natural period of the fluid in a water channel resonator, resonance occurs and the internal fluid amplifies highly to a standing wave form. In order to analyze the wave response in a water channel resonator, we used the matched asymptotic expansion method and boundary element method. The both results were in good agreement with the results of the model test carried out in the two-dimensional wave tank of Jeju National University. Wave guider has an optimum length and installation angle according to the period of the incident wave, and especially effective in enhancing the amplification factor in a period range deviated from the resonance period. It is expected that the wave energy can be effectively extracted by placing the point absorber wave energy converter at the position of anti-node where the maximum wave height is formed by the internal fluid resonance.

3-D Dynamic Response Characteristics of Seabed around Composite Breakwater in Relation to Wave-Structure-Soil Interaction (파랑-구조물-지반 상호작용에 의한 혼성제 주변 해저지반의 3차원 동적응답 특성)

  • Hur, Dong-Soo;Park, Jong-Ryul;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.505-519
    • /
    • 2016
  • If the seabed is exposed to high waves for a long period, the pore water pressure may be excessive, making the seabed subject to liquefaction. As the water pressure change due to wave action is transmitted to the pore water pressure of the seabed, a phase difference will occur because of the fluid resistance from water permeability. Thus, the effective stress of the seabed will be decreased. If a composite breakwater or other structure with large wave reflection is installed over the seabed, a partial standing wave field is formed, and thus larger wave loading is directly transmitted to the seabed, which considerably influences its stability. To analyze the 3-D dynamic response characteristics of the seabed around a composite breakwater, this study performed a numerical simulation by applying LES-WASS-3D to directly analyze the wave-structure-soil interaction. First, the waveform around the composite breakwater and the pore water pressure in the seabed and rubble mound were compared and verified using the results of existing experiments. In addition, the characteristics of the wave field were analyzed around the composite breakwater, where there was an opening under different incident wave conditions. To analyze the effect of the changed wave field on the 3-D dynamic response of the seabed, the correlation between the wave height distribution and pore water pressure distribution of the seabed was investigated. Finally, the numerical results for the perpendicular phase difference of the pore water pressure were aggregated to understand the characteristics of the 3-D dynamic response of the seabed around the composite breakwater in relation to the water-structure-soil interaction.

Development of a Mid-infrared CW Optical Parametric Oscillator Based on Fan-out Grating MgO:PPLN Pumped at 1064 nm

  • Bae, In-Ho;Lim, Sun Do;Yoo, Jae-Keun;Lee, Dong-Hoon;Kim, Seung Kwan
    • Current Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.33-39
    • /
    • 2019
  • We report development of a frequency-stabilized mid-infrared continuous-wave (cw) optical parametric oscillator (OPO) based on a fan-out grating MgO:PPLN crystal pumped at 1064 nm. The OPO resonator was designed as a pump-enhanced standing-wave cavity that resonates to the pump and signal beams. To realize stable operation of the OPO, we applied a modified Pound-Drever-Hall technique, which is a well-known method for powerful laser frequency stabilization. Tuning a poling period of the fan-out grating of the crystal allows wavelength-tunable OPO outputs from 1510 nm to 1852 nm and from 2500 nm to 3600 nm for signal and idler beams, respectively. At the idler wavelengths of 2500 nm, 3000 nm and 3500 nm, we achieved more than 50 mW of output powers at a pumping power of 1.1 W. The long-term stability of the OPO was confirmed by recording the power and wavelength variations of the idler for an hour.

Evaluation of DNA Damage Using Microwave Dielectric Absorption Spectroscopy

  • Hirayama, Makoto;Matuo, Youichirou;Sunagawa, Takeyoshi;Izumi, Yoshinobu
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.339-343
    • /
    • 2016
  • Background: Evaluation of deoxyribonucleic acid (DNA)-strand break is important to elucidate the biological effect of ionizing radiations. The conventional methods for DNA-strand break evaluation have been achieved by Agarose gel electrophoresis and others using an electrical property of DNAs. Such kinds of DNA-strand break evaluation systems can estimate DNA-strand break, according to a molecular weight of DNAs. However, the conventional method needs pretreatment of the sample and a relatively long period for analysis. They do not have enough sensitivity to detect the strand break products in the low-dose region. Materials and Methods: The sample is water, methanol and plasmid DNA solution. The plasmid DNA pUC118 was multiplied by using Escherichia coli JM109 competent cells. The resonance frequency and Q-value were measured by means of microwave dielectric absorption spectroscopy. When a sample is located at a center of the electric field, resonance curve of the frequency that existed as a standing wave is disturbed. As a result, the perturbation effect to perform a resonance with different frequency is adopted. Results and Discussion: The resonance frequency shifted to higher frequency with an increase in a concentration of methanol as the model of the biological material, and the Q-value decreased. The absorption peak in microwave power spectrum of the double-strand break plasmid DNA shifted from the non-damaged plasmid DNA. Moreover, the sharpness of absorption peak changed resulting in change in Q-value. We confirmed that a resonance frequency shifted to higher frequency with an increase in concentration of the plasmid DNA. Conclusion: We developed a new technique for an evaluation of DNA damage. In this paper, we report the evaluation method of DNA damage using microwave dielectric absorption spectroscopy.