• 제목/요약/키워드: Long Term Runoff

Search Result 286, Processing Time 0.025 seconds

Modification of Spatial Grid Based Distributed Model Considering River Basin Characteristics (유역특성을 반영한 공간격자기반의 분포형모형 개선)

  • Park, Jin Hyeog;Hur, Young Teck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.431-436
    • /
    • 2008
  • Recently, the rapid development of GIS technology has made it possible to handle a various data associated with spatially hydrological parameters with their attribute information. Therefore, there has been a shift in focus from lumped runoff models to distributed runoff models, as the latter can consider temporal and spatial variations of discharge. In this research, a distributed rainfall-runoff model based on physical kinematic wave for analysis of surface and river flow was used to simulate temporal and spatial distribution of long-term discharge. The snowfall and melting process model based on Hydro-BEAM was developed, and various hydrological parameters for input data of the model was extracted from basic GIS data such as DEM, land cover and soil map. The developed model was applied for the Shonai River basin(532) in Japan, which has sufficient meteorological and hydrological data, and displayed precise runoff results to be compared to the hydrograph.

Understanding the Groundwater System through the Long-term Monitoring - a case Study of Gwangneung Headwater Catchment (장기모니터링을 통한 지하수계의 이해 - 광릉소유역 사례 연구)

  • Lee, Jae-Min;Woo, Nam-C.
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.4
    • /
    • pp.51-62
    • /
    • 2012
  • Effects of climate change on groundwater system requires understanding the groundwater system in temporal and spatial scales through the long-term monitoring. In this study, the spatio-temporal variations of groundwater were analyzed through the continuous observation of water level, electrical conductivity (EC) and water temperature with automatic data-loggers and sampling in a Gwangneung catchment, Korea, for the four years from 2008 to 2011. Groundwater monitoring were performed at the nest-type wells, MW1 and MW2, located in upsteam and downstream of the catchment, respectively. During the survey period, both the total amount of annual precipitation and the frequency of concentrated rainfall have increased resulting in the elevation of runoff. Water level of MW1 showed no significant fluctuations even during the rainy season, indicating the confined groundwater system. In contrast, that of MW2 showed clear seasonal changes, indicating the unconfined system. The lag-time of temperature at both wells ranged from one to three months depending on the screened depths. Results of chemical analyses indicated that major water compositions were maintained constantly, except for the EC decreases due to the dilution effect. Values of the stable-isotope ratios for oxygen and deuterium were higher at MW2 than MW1, implying the confined system at the upstream area could be locally developed.

Runoff Characteristics of the Oedocheon Watershed in Jeju Island (제주도 외도천유역의 유출특성)

  • Ha, Kyoo-Chul;Moon, Deok-Cheol;Koh, Ki-Won;Park, Ki-Hwa
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.5
    • /
    • pp.20-32
    • /
    • 2008
  • Runoff characteristics of the Oedocheon in Jeju island were investigated using the long-term stream stage monitoring data. At the Cheonah valley in the upstream area and Oedocheon downstream, annual runoff occurred 21 and 12 times, respectively, and their average runoff periods were 21 days and 12 days, respectively. Stream stage response time to rainfall was 4 hours, and storm-water transfer from the upstream, Cheonah valley, to the Oedocheon downstream took about 2 hours. The stream discharge measurements had been carried out from Feb. 2004 to Jul. 2005, and showed that normal discharge of the Oedocheon was 0.39 $m^3$/sec in average. Stage-discharge curves were developed to estimate base flow (normal discharge) and (direct) surface runoff. The base flow separations by a numerical filtering technique illustrated that annual surface runoff and base flow accounted respectively for 31.8${\sim}$36.5%, 63.5${\sim}$68.2% of the total stream discharge.

An Evaluation Method of Water Supply Reliability for a Dam by Firm Yield Analysis (보장 공급량 분석에 의한 댐의 물 공급 안전도 평가기법 연구)

  • Lee, Sang-Ho;Kang, Tae-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.5 s.166
    • /
    • pp.467-478
    • /
    • 2006
  • Water supply reliability for a dam is defined with a concept of probabilistic reliability. An evaluation procedure of the water supply reliability is shown with an analysis of long term firm yield reliability. The water supply reliabilities of Soyanggang Dam and Chungju Dam were evaluated. To evaluate the water supply reliability, forty one sets of monthly runoff series were generated by SAMS-2000. HEC-5 model was applied to the reservoir simulation to compute the firm yield from a monthly data of time series. The water supply reliability of the firm yield from the design runoff data of Soyanggang Dam is evaluated by 80.5 % for a planning period of 50 years. The water supply reliability of the firm yield from the historic runoff after the dam construction is evaluated by 53.7 %. The firm yield from the design runoff is 1.491 billion $m^3$/yr and the firm yield from the historic runoff is 1.585 billion $m^3$/yr. If the target draft Is 1.585 billion $m^3$/yr, additional water of 0.094 billion $m^3$ could be supplied every year with its risk. From the similar procedures, the firm yield from the design runoff of Chungju Dam is evaluated 3.377 billion $m^3$/yr and the firm yield from the historic runoff is 2.960 billion $m^3$/yr. If the target draft is 3.377 billion $m^3$/yr, water supply insufficiency occurs for all the sets of time series generated. It may result from overestimation of the spring runoff used for design. The procedure shown can be a more objective method to evaluate water supply reliability of a dam.

Runoff Characteristics using RRFS on Geum River Basin (RRFS에 의한 금강유역의 유출특성)

  • Maeng, Seung-Jin;Lee, Hyeon-Gyu;Hwang, Man-Ha;Koh, Ick-Hwan
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.408-412
    • /
    • 2006
  • Growing needs for efficient management of water resources urge integrated management of whole basin. As one of the tools for supporting above tasks, this study aims to indicate a hydrologic model that can simulate the streamflow discharges at some control points located both upper and down stream of dams. For the development and utilization of non analysis model, relevant basin information including historical precipitation and river water stage data, geophysical basin characteristics, and water intake and consumptions needs to be collected and stored into the hydrologic database of Integrated Real-Time Water Information System. The well-known SSARR model was selected for basis of continuous daily runoff model for forecasting short and long-term national river flows in this paper.

  • PDF

A Sturdy on Rainfall Runoff Models for Forecast of Long-Term Runoff in Miho Basin (미호천 유역의 장기유출 예측을 위한 개념적 강우유출모형의 적용)

  • Ahn, Sang-Eok;Lee, Hyo-Sang;Jeon, Min-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.991-995
    • /
    • 2009
  • 최근 기후변화 등으로 우리나라의 경우 강수일수는 감소한 반면 집중호우의 발생빈도는 증가하고 있다. 실제 가뭄과홍수와 같은 극치사상의 피해가 증가될 가능성과 이러한 재해로부터 인명 및 재산을 보호하고 효율적인 수자원 활용을 위해서는 장기간 강우-유출과정의 정확한 해석이 필수적이다. 본 연구는 미호천 유역을 대상으로 장기유출을 모의하기 위해 개념적 강우유출모형을 적용하였다. 본 연구의 개념적 강우유출모형은 PDM(Probability Distributed Model)으로 유역을 한 개의 단위구역으로 사용한 집중형(lumped) 모형이고, 분포형 모형에 비하여 간단 (parsimonious)하며 영국의 수자원 및 홍수 관리 목적으로 널리 사용되고 있다. 모형의 검정은 MC(Monte Carlo) 방법과 SCE-UA(Shuffled Complex Evolution-University of Arizona) 방법을 적용하였으며, NSE(Nash Sutcliffe Efficiency) 목적함수를 사용하여 모형의 성능을 검토하였다. 그 결과, MC 방법과 SCE-UA 방법 모두 NSE의 값 0.9 이상으로 만족할 만한 모의성능을 나타내었다. 분포형 모형에 비하여 적은 수문자료 및 검정변수를 갖는 PDM 모형을 수문자료의 취득이 용이하지 않은 중 소규모 유역에 적용하여 모형의 검정 및 유량산정에 있어 우수함을 확인하였다. 이에 우리나라 전역에 걸쳐 다양한 유역을 대상으로 PDM 모형의 검토가 요구되고, 향후 우리나라의 홍수량 산정 및 수자원 관리에 적용될 수 있다고 판단된다.

  • PDF

Characteristics of Runoff on Southern Area of Jeju Island, Korea (제주도 남부지역의 유출 특성)

  • Kang, Myung-Su;Yang, Sung-Kee;Jung, Woo-Yeol;Kim, Dong-Su
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.591-597
    • /
    • 2013
  • For Kangjeong stream and Akgeun stream in the central part of the southern Jeju Island, on-site discharge estimation was carried out for approximately 10 months (July 2011-April 2012) twice a month on a regular basis by using ADCP (acoustic doppler current profiler) and long term rate of discharge was calculated by using SWAT (soil and water assessment tool) model. The discharge was $0.28-1.30m^3/sec$ for Kangjeong stream and $0.10-1.54m^3/sec$ for Akgeun stream. It showed the maximum in the summer and the minimum in the winter. As a result of parameter sensitivity analysis of SWAT model, CN (NRCS runoff curve number for moisture condition II), SOL_AWC (available water capacity of the soil layer), and ESCO (soil evaporation compensation factor) showed sensitive responses. By using the result, the model was corrected and the rate of discharge was calculated. As a result, the annual discharge rate was 27.12-31.86(%) at the Akgeun basin and 23.55-28.43(%) at the Kangjeong basin.

Development of a Stream Discharge Estimation Program (자연하천 유량산정 프로그램 개발)

  • Lee Sang Jin;Hwang Man Ha;Lee Bae Sung;Ko Ick Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.1
    • /
    • pp.27-38
    • /
    • 2006
  • In this study, we developed a program to estimate discharge efficiently considering major hydraulic characteristic including water level, river bed, water slope and roughness coefficient in a natural river. Stream discharge was measured at Gongju gauge station located in the down stream of the Daechung Dam during normal and dry seasons from 2003 to 2004. The developed model was compared with the results from the existing rating curve at T/M gage stations, and was used for runoff analyses. Evaluating the developed river discharge estimation program, it was applied during 1983-2004 that base flow separation method and RRFS (Rainfall Runoff Forecasting System) which is based on SSARR (Streamflow Synthesis And Resevoir Regulation). The result presents the stage-discharge curve creator range at the Gong-ju is overestimated by approximately $10-20\%$, especially at the low stage. It is attributed to the hydraulic characteristics at the study. The discharge simulated by the RRFS and base flow separation, which is calibrated using the measurement at the early spring and late fall season during relatively d]v season, shows the least errors. The coefficient of roughness at Gongju station varied with the high and low water level.

Hydrologic Component Analysis of the Seolma-Cheon Watershed by Using SWAT-K Model (SWAT-K 모형을 이용한 설마천 유역의 수문성분 해석)

  • Kim, Nam-Won;Lee, Ji-Eun;Chung, Il-Moon;Kim, Dong-Pil
    • Journal of Environmental Science International
    • /
    • v.17 no.12
    • /
    • pp.1363-1372
    • /
    • 2008
  • In this study, long term semi distributed hydrologic model SWAT-K(Korea) is applied to the Seolma-Cheon watershed to analyze the hydrological components. Seolma-Cheon watershed has been operated as the test watershed of Korea Institute of Construction Technology for 13 years. Therefore it has an enough hydrologic data to analyze the hydrologic characteristics of small watershed. Especially, for the proper runoff analysis of steep watershed, calibration is performed reflecting the regression equation of slope and slope length. The simulated discharge shows good agreement with the observed one and the simulated evapotranspiration and groundwater discharge also show satisfactory results. Finally we presents the ratio of major hydrologic components for 3 years with those obsrved ones. This study is the basic research for future analyses such as relationship between hydrologic components and vegetation, watershed sediment nonpoint sources discharge etc.

The evaluation of wetland sustainability for constructing a washland and Its hydrologic effect to Upo wetland (천변저류지 조성에 따른 습지지속가능성 평가 및 우포늪에 미치는 수문학적 영향 평가)

  • Kim, Jae-Chul;Kim, Jin-Kwan;Kim, Sang-Dan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.137-148
    • /
    • 2008
  • There have been many cases of using wetlands as an alternative in controlling stormwater, treating mining leachate, and agricultural discharge, and so on, recently. The reality is, however, that the wetlands are not properly applicable because of the lack of enough longterm data for wetlands due to the difficulty of long-term monitoring. Therefore, this study tries to analyze the storage of Upo, Mokpo, Sajipo, and Jjokjibeul in Topyeong watershed using SWAT(Soil and Water Assessment Tool) model, one of the long-term runoff hydrologic model, for the purpose of generating the long-term data and analyzing the hydrologic behavior of wetlands based on the generated data. Also, the changes in runoff at the outlet are analyzed after applying the simulation of constructing washland in Topyeong watershed and the storage in Upo is analyzed. The result shows that the runoff at the outlet of the watershed is decreased in rainy season from July to August and increased in dry season from December to February. In addition, the analysis of Upo storage concludes that Upo can be influenced by the construction of the washland. The duration curve of washland is then analyzed in order to evaluate the wetland's sustainability in terms of washland and it appears that the runoff of washland is simulated to be less than that of the existing wetland. Moreover, runoffs of some washlands are simulated to be less even in wet season. These results lead to the fact that there should be further hydrologic management for constructed washland. Then, the changes in loads (TN and TP) because of constructing washland are analyzed. The result shows that the loads are reduced because of the construction. Also, the changes in loads due to the construction of buffer strips are analyzed to compare the load reductions caused by a washland. Finally, REMM model, a riparian management model, is applied to overcome the hydrologic ambiguousness of SWAT model, and then, the SWAT model results are compared to those of REMM.