• Title/Summary/Keyword: Long Term Allowable Stress

Search Result 12, Processing Time 0.031 seconds

A Control Value Analysis on the Axial Force of Braced Excavation Walls Used In Korea (국내 적용되고 있는 흙막이구조물의 축력에 대한 관리기준치 분석)

  • Jung, Sang-Kug;Lee, Kwang-Chan;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.171-180
    • /
    • 2000
  • This study aims to present a more reasonable control value than the exiting one by comparing and analyzing control values and field instrumentation values of the whole excavation depth of the four case sites using geometric averaging as a statistical method. The range of the study is confined to three things: (1) the axial force of the braced excavation walls among a variety of items prescribed in the control values by stress deformation of walls and adjacent structures; (2) by approximation of the allowable and design value; (3) and by safety factor. As a res it is desirable to revise "(Long term allowable stress + Short term allowable stress)/2 ~ Short term allowable stress," presented in the present control values by stress deformation of walls and adjacent structures, to "(Long term allowable stress + Short term allowable stress)/5 ~ (Short term allowable stress)/3." The result also shows that since there is a difference of about 3.5%, it is not necessary to revise 70, 90, and 100 percent of LEVEL I, II, and III, prescribed in the control values by the allowable and design value approximation. In addition, modifying the control value by the safety factor, now 1.07, is unnecessary, although it varies little difference from the present value.

  • PDF

Tabu search based optimum design of geometrically non-linear steel space frames

  • Degertekin, S.O.;Hayalioglu, M.S.;Ulker, M.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.5
    • /
    • pp.575-588
    • /
    • 2007
  • In this paper, two algorithms are presented for the optimum design of geometrically nonlinear steel space frames using tabu search. The first algorithm utilizes the features of short-term memory (tabu list) facility and aspiration criteria and the other has long-term memory (back-tracking) facility in addition to the aforementioned features. The design algorithms obtain minimum weight frames by selecting suitable sections from a standard set of steel sections such as American Institute of Steel Construction (AISC) wide-flange (W) shapes. Stress constraints of AISC Allowable stress design (ASD) specification, maximum drift (lateral displacement) and interstorey drift constraints were imposed on the frames. The algorithms were applied to the optimum design of three space frame structures. The designs obtained using the two algorithms were compared to each other. The comparisons showed that the second algorithm resulted in lighter frames.

Long-term Creep Life Prediction Methods of Grade 91 Steel (Grade 91 강의 장시간 크리프 수명 예측 방법)

  • Park, Jay-Young;Kim, Woo-Gon;EKAPUTRA, I.M.W.;Kim, Seon-Jin;Jang, Jin-Sung
    • Journal of Power System Engineering
    • /
    • v.19 no.5
    • /
    • pp.45-51
    • /
    • 2015
  • Grade 91 steel is used for the major structural components of Generation-IV reactor systems such as a very high temperature reactor (VHTR) and sodium-cooled fast reactor (SFR). Since these structures are designed for up to 60 years at elevated temperatures, the prediction of long-term creep life is very important to determine an allowable design stress of elevated temperature structural component. In this study, a large body of creep rupture data was collected through world-wide literature surveys, and using these data, the long-term creep life was predicted in terms of three methods: Larson-Miller (L-M), Manson-Haferd (M-H) and Wilshire methods. The results for each method was compared using the standard deviation of error. The L-M method was overestimated in the longer time of a low stress. The Wilshire method was superior agreement in the long-term life prediction to the L-M and M-H methods.

Free Spanning of Offshore Pipelines by DNV 2002 (DNV 2002에 의한 해저관로의 자유경간해석)

  • Choi, Han-Suk;Joo, Joo-Kyung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.29-33
    • /
    • 2002
  • A procedure of free span and fatigue analysis of offshore pipelines was made per DNV-RP-F105, 2002. The new method includes the axial force and deflection load in pipelines. The screening criteria were used to calculate the allowable span lengths. The screening criteria allow small amplitudes of vortex-induced vibration due to wave and current loading. However, the induced pipe stress is very small and usually below the limit stress of a typical S-N curve. A simplified method was established to calculate the fatigue damage due to long-term current distribution. The long-term current statistics was assumed with a 3-parameter Weibull distribution. The fatigue damage was estimated for the span lengths obtained from the screening criteria for various conditions. Sample calculations show the effect of axial force for various boundary conditions.

  • PDF

Reliability Prediction of Long-term Creep Strength of Gr. 91 Steel for Next Generation Reactor Structure Materials (미래형 원자로 구조 재료용 Gr. 91 강의 장시간 크리프 강도의 신뢰성 예측)

  • Kim, Woo-Gon;Park, Jae-Young;Yin, Song-Nan;Kim, Dae-Whan;Park, Ji-Yeon;Kim, Seon-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.275-280
    • /
    • 2011
  • This paper focuses on reliability prediction of long-term creep strength for Modified 9Cr-1Mo steel (Gr. 91) which is considered as one of the structural materials of next generation reactor systems. A "Z-parameter" method was introduced to describe the magnitude of standard deviation of creep rupture data to the master curve which can be plotted by log stress vs. The larson-Miller parameter (LMP). Statistical analysis showed that the scattering of the Z-parameter for the Gr. 91 steel well followed normal distribution. Using this normal distribution of the Z-parameter, the various reliability curves for creep strength design, such as stress-time temperature parameter reliability curves (${\sigma}$-TTP-R curves), stress-rupture time-reliability curves (${\sigma}-t_{r}-R$ curves), and allowable stress-temperature- reliability curves ([${\sigma}$]-T-R curves) were reasonably drawn, and their results are discussed.

A Study on Concrete Lining Stress Changes Considering Load Supporting Capacity of Primary Supports of NATM Tunnel (NATM 터널에서 1차지보재의 지보압을 고려한 콘크리트라이닝 응력변화에 관한 연구)

  • Jeon, Sang Hyun;Shin, Young Wan;Yoo, Han Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4C
    • /
    • pp.147-154
    • /
    • 2011
  • Currently NATM tunnels are designed by applying the initial ground loads caused during construction to the primary supports, conisting of shotcrete, steel ribs and rock bolts. For long term considerations, it is assumed that the primary supports lose its functionality and therefore the secondary support, i.e. concrete lining, is design to resist against the entire ground loads. But the steel ribs, usually applied to bad ground conditions, are embedded in shotcrete causing very little corrosion and therefore the assumption that the primary support will lose all of its functionality is too conservative. Also even though shotcrete carbonates in long term, excluding it from design is also too conservative. In this study, we have, through analytical and numerical analysis, set a rational level of support pressure and allowable relaxed rock mass height sustainable by the primary support for long term design. Changes in sectional forces of the concrete lining considering the calculated support pressure of the primary supports was also carried out. Shallow subway tunnels were considered in the analysis with weathered rock and soft rock ground conditions. The analysis results showed that, by considering the support pressure of steel ribs, an economical design of the concrete lining is possible.

Shear Crack Control for High Strength Reinforced Concrete Beams Considering the Effect of Shear-Span to Depth Ratio of Member

  • Chiu, Chien-Kuo;Ueda, Takao;Chi, Kai-Ning;Chen, Shao-Qian
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.4
    • /
    • pp.407-424
    • /
    • 2016
  • This study tests ten full-size simple-supported beam specimens with the high-strength reinforcing steel bars (SD685 and SD785) using the four-point loading. The measured compressive strength of the concrete is in the range of 70-100 MPa. The main variable considered in the study is the shear-span to depth ratio. Based on the experimental data that include maximum shear crack width, residual shear crack width, angle of the main crack and shear drift ratio, a simplified equation are proposed to predict the shear deformation of the high-strength reinforced concrete (HSRC) beam member. Besides the post-earthquake damage assessment, these results can also be used to build the performance-based design for HSRC structures. And using the allowable shear stress at the peak maximum shear crack width of 0.4 and 1.0 mm to suggest the design formulas that can ensure service-ability (long-term loading) and reparability (short-term loading) for shear-critical HSRC beam members.

Analysis of Fatigue Safety for Anti-Loose Nuts System with Dual Nuts (이중너트가 적용된 풀림방지너트 시스템의 피로안전성 분석)

  • Choi, Jung-Youl;Kim, Jun-Hyung;Chung, Jee-Seung;Ka, Sang-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.4
    • /
    • pp.22-27
    • /
    • 2017
  • In this study, the authors aim to evaluate a structural and fatigue safety of a new type anti-loose nut system with dual nuts composed of main nut and outer nut to enhance the long-term workability and durability so as to improve the performance of conventional anti-loose nut system. Also, a three-dimensional finite-element method analysis was performed to consider the actual geometry and material property of anti-loose nut system with dual nuts and the effect of static and dynamic loads and loading directions. The analytical results showed that the overall static and dynamic stress of the components of the anti-loose nut system with dual nuts were found to be less than that of the fatigue limit of Goodman-smith diagram and allowable stress of each materials, therefore the anti-loose nut system with dual nuts was sufficient to ensure a structural and fatigue safety.

An Experimental Study on Biaxial Tensile Characteristics of ETFE Film and Stress Relaxation of Tension Typed Membrane Structures (ETFE 필름의 2축 인장특성 및 텐션방식 막구조물의 응력완화 거동에 관한 실험적 연구)

  • Kim, Seung-Deog;Jeong, Eul-Seok;Kawabata, Masaya
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • Until recently, almost all ETFE film structures that have been erected is the cushion type because there are problems at lower allowable strength under elastic range and viscosity behaviour such as creep and relaxation of ETFE films under long-term stresses. But the number of tension type structures is currently increasing. This paper proposes the stretch fabrication of ETFE film to verify the applicability of ETFE films to tensile membrane structures. First of all, to investigate the possibility of application on tensile membrane structures, the stretch fabrication test is carried out, and it is verified that it is possible to increase the yield strength of the film membrane structures. After simulating the experiment also carries out an analytical investigation, and the effectiveness of the elasto-plastic analysis considering the viscous behavior of the film is investigated. Finally, post-aging tension measurement is conducted at the experimental facilities, and the viscosity behavior resulting from relaxation is investigated with respect to tensile membrane structures.

The Effect of Gaps in Concrete Bearing Surface of Direct Fixation Track on Vehicle and Track Interaction (직결궤도 체결구 하부에 발생한 단차가 차량/궤도 상호작용에 미치는 영향)

  • Yang, Sin-Chu;Kim, Eun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.50-57
    • /
    • 2010
  • Various installation faults may lie in fasteners in the construction of a direct-fixation track by the top-down method. At an extreme, they may cause excessive interaction between the train and track, compromise the running safety of the train, and cause damage to the track components. Therefore, the faults need to be kept within the allowable level through an investigation of their effects on the interactions between the train and track. In this study, the vertical dynamic stiffness of fasteners in installation faults was measured based on the dynamic stiffness test by means of an experimental apparatus that was devised to feasibly reproduce gap faults. This study proposes an effective analytical model for a train-track interaction system in which most elements, except the nonlinear wheel-rail contact and some components that behave bi-linearly, exhibit linear behavior. To investigate the effect of the behavior of fasteners in gap faults in a direct-fixation track on the vehicle and track, vehicle-track interaction analyses were carried out, targeting key review parameters such as the wheel load reduction factor, vertical rail displacement, rail bending stress, and mean stress of the elastomer. From the results, it was noted that the gap faults in the concrete bearing surface of a direct-fixation track need to be limited for the sake of the long-term durability of the elastomer than for the running safety of the train or the structural safety of the track.

  • PDF