• Title/Summary/Keyword: Long Chain Fatty Acids

Search Result 187, Processing Time 0.052 seconds

A comparison of Echium, fish, palm, soya, and linseed oil supplementation on pork quality

  • Barbara Elizabeth van Wyngaard;Arno Hugo;Phillip Evert Strydom;Foch-Henri de Witt;Carolina Henritta Pohl;Arnold Tapera Kanengoni
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1414-1425
    • /
    • 2023
  • Objective: Long chain n-3 polyunsaturated fatty acids (PUFA) exert positive effects on human health. The long chain n-3 PUFA of pork can be increased by adding fish oil to the diet. Due to the cost and availability of fish oil an alternative source must be found. Methods: This study evaluated the effect of five dietary oils on meat quality, fatty acid composition and lipid stability. The five diets contained 1% palm oil (Control), 1% soya oil, 1% linseed oil, 1% fish oil, and 1% Echium oil, respectively. The trial consisted of 60 gilts, randomly allocated to five groups. Results: All color parameters, extractable fat content, fat free dry matter, and moisture content of the m. longissimus muscle were unaffected by dietary treatment. Consumers and a trained sensory panel could not detect a difference between the control samples and the Echium oil sample during sensory analysis. Samples containing higher levels of PUFA (soya, linseed, fish, and Echium oil) had higher levels of primary and secondary lipid oxidation products after refrigerated and frozen storage. However, these values were still well below the threshold value where off flavors can be detected. The Echium oil treatment had significantly higher levels of long chain PUFA than the linseed oil treatment, but it was still significantly lower than that of the fish oil treatment. Conclusion: Echium oil supplementation did not increase the levels of n-3 to the same extent as fish oil did. The result did however suggest that Echium oil can be used in pig diets to improve muscle long chain n-3 fatty acid content without any adverse effects on meat quality when compared to linseed, soya, and palm oil.

Fatty Acid Composition of Grain- and Grass-Fed Beef and Their Nutritional Value and Health Implication

  • Kim, Margarette C. Nogoy;Sun, Bin;Shin, Sangeun;Lee, Yeonwoo;Li, Xiang Zi;Choi, Seong Ho;Park, Sungkwon
    • Food Science of Animal Resources
    • /
    • v.42 no.1
    • /
    • pp.18-33
    • /
    • 2022
  • Beef contains functional fatty acids such as conjugated linoleic acid and longchain fatty acids. This review summarizes results from studies comparing the fatty acid composition of beef from cattle fed either grass or grain-based feed. Since functional lipid components are contributed through dietary consumption of beef, the fatty acid composition is reported on mg/100 g of meat basis rather than on a percentage of total fat basis. Beef from grass-fed contains lesser total fat than that from grain-fed in all breeds of cattle. Reduced total fat content also influences the fatty acid composition of beef. A 100 g beef meat from grass-fed cattle contained 2,773 mg less total saturated fatty acids (SFA) than that from the same amount of grain-fed. Grass-fed also showed a more favorable SFA lipid profile containing less cholesterol-raising fatty acids (C12:0 to C16:0) but contained a lesser amount of cholesterol-lowering C18:0 than grain-fed beef. In terms of essential fatty acids, grass-fed beef showed greater levels of trans-vaccenic acid and long-chain n-3 polyunsaturated fatty acids (PUFA; EPA, DPA, DHA) than grain-fed beef. Grass-fed beef also contains an increased level of total n-3 PUFA which reduced the n-6 to n-3 ratio thus can offer more health benefits than grain-fed. The findings signify that grass-fed beef could exert protective effects against a number of diseases ranging from cancer to cardiovascular disease (CVD) as evidenced by the increased functional omega-3 PUFA and decreased undesirable SFA. Although grain-fed beef showed lesser EPA, DPA, and DHA, consumers should be aware that greater portions of grain-fed beef could also achieve a similar dietary intake of long-chain omega-3 fatty acids. Noteworthy, grain-fed beef contained higher total monounsaturated fatty acid that have beneficial roles in the amelioration of CVD risks than grass-fed beef. In Hanwoo beef, grain-fed showed higher EPA and DHA than grass-fed beef.

Bioactive Lipids and Their Derivatives in Biomedical Applications

  • Park, Jinwon;Choi, Jaehyun;Kim, Dae-Duk;Lee, Seunghee;Lee, Bongjin;Lee, Yunhee;Kim, Sanghee;Kwon, Sungwon;Noh, Minsoo;Lee, Mi-Ock;Le, Quoc-Viet;Oh, Yu-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.29 no.5
    • /
    • pp.465-482
    • /
    • 2021
  • Lipids, which along with carbohydrates and proteins are among the most important nutrients for the living organism, have a variety of biological functions that can be applied widely in biomedicine. A fatty acid, the most fundamental biological lipid, may be classified by length of its aliphatic chain, and the short-, medium-, and long-chain fatty acids and each have distinct biological activities with therapeutic relevance. For example, short-chain fatty acids have immune regulatory activities and could be useful against autoimmune disease; medium-chain fatty acids generate ketogenic metabolites and may be used to control seizure; and some metabolites oxidized from long-chain fatty acids could be used to treat metabolic disorders. Glycerolipids play important roles in pathological environments, such as those of cancers or metabolic disorders, and thus are regarded as a potential therapeutic target. Phospholipids represent the main building unit of the plasma membrane of cells, and play key roles in cellular signaling. Due to their physical properties, glycerophospholipids are frequently used as pharmaceutical ingredients, in addition to being potential novel drug targets for treating disease. Sphingolipids, which comprise another component of the plasma membrane, have their own distinct biological functions and have been investigated in nanotechnological applications such as drug delivery systems. Saccharolipids, which are derived from bacteria, have endotoxin effects that stimulate the immune system. Chemically modified saccharolipids might be useful for cancer immunotherapy or as vaccine adjuvants. This review will address the important biological function of several key lipids and offer critical insights into their potential therapeutic applications.

PAPER-TO-PAPER FRICTION CAUSED BY WOOD EXTRACTIVES ON THE PAPER SURFACE IS DETERMINE BY LENGTH AND ORDER OF THE HYDROCARBON CHAINS

  • Nilvebrant, Nils-Olof;Niklas Garoff;Christer Fellers
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.204-208
    • /
    • 1999
  • Friction was measured on filter paper sheets impregnated with model compounds representing wood extractives using an apparatus based on the horizontal plane principle. The best lubrication of paper surfaces was achieved when they were completely separated by a densely packed film of saturated long-chain amphophilic molecules, such as fatty acids. The fatty acids adsorbed with their polar ends on the paper surface, causing their hydrocarbon chaine to be orientated perpendicularly to the paper surface. The saturated C18-acid, stearic acid, was an efficient lubricator for paper surfaces. The introduction of a double bond in stearic acid eliminated its lubricating ability. The spatial length of the lubricating fatty acid thereby decreases from 24${\AA}$ to 11${\AA}$. However the transisomer of oleic acid, elidic acid, had the ability to lower friction due to an increased spatial length of the fatty acid. Both the spatial length of the hydrocarbon chain and the number of lubricating chains may be of importance for the paper-to-paper friction caused by wood extractives. A hydrophilic head-graup in the wood extractive and an ordered molecular layer of lubricating molecules seems also to be prerequisites for efficient lubrication. A chemical weak boundary layer between the paper sheets was suggested to cause the low friction when long chain saturated fatty acids were deposited on paper.

METHANOGENIC FERMENTATION OF FAT-CONTAINING WASTEWATER MEDIATED BY IRON

  • Zubair, A.;Ivanov, V.;Kim, In-S.
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.109-112
    • /
    • 2000
  • Long chain fatty acids (LCFA) are potential inhibitors of bacteria involved in anaerobic digestion because of their surface activity. Precipitation of long-chain fatty acids with iron can improve the anaerobic degradation due to their precipitation and reducing surface properties. Degradation of stearic acid was improved in the presence of iron (II). The methane production was increased 1.6 times as compared to control. Iron-containing soil was applied for degradation of vegetable oil as model case. The methane production was increased 1.5 times as compared to control. Yield of methane production was 0.09 and 0.06L/g COD in experiment and control respectively. Optimum COD/Fe ratio was found 20 mg/mg. Iron (II) can be produced in the treatment system from iron (III) hydroxide or iron containing minerals.

  • PDF

Biogas Production Performance Based on Carbon Number and Double Bond Count of Long-chain Fatty Acids

  • Kim, Soo-Ah;Kim, Sang-Hun
    • Journal of Biosystems Engineering
    • /
    • v.43 no.1
    • /
    • pp.37-44
    • /
    • 2018
  • Purpose: The objective of this study was to investigate the high-efficiency anaerobic digestion of organic wastes with high fat content. Specifically, the analysis focused on biogas production performance with a focus on carbon number and the double bond count of the long-chain fatty acids (LCFAs), which are hydrolysis products of triglycerides. Methods: Experiments were performed under mesophilic anaerobic conditions with a feed-to-microorganism ratio (F/M) of 1.0. Biogas production performance was analyzed through biogas production patterns, lag-phase, and the time required for 90% biogas production (T90). Results: Biogas production increased when the content of unsaturated LCFAs (containing relatively large numbers of carbon atoms) increased. In substrate containing LCFAs with four or more double bonds, although the initial lag-phase in biogas production was shortened, development of a three-step lag-phase resulted in decreased biogas production. These results suggest that high rates of anaerobic digestion are possible when the LCFAs have high unsaturated fatty acid content with three or fewer double bonds. Conclusions: When various types of LCFAs are digested anaerobically, biogas production performance can be improved if the unsaturated fatty acid content and number of double bonds are optimized for maximum production.

Some Peroxysterols and Ceramides from "Phellinus ribis", a Korean Wild Mushroom

  • Moon, Dongcheul;Hwang, Kyunghwa;Choi, Kyuyeol;Choi, Dongcheol;Kim, Changsoo;Kim, Jaegil;Lee, Yongmoon;Zee, Okpyo
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.901-906
    • /
    • 1995
  • Studies on the chemical constituents from a Korean wild mushroom, Phellinus ribis, were carried out. A triterpenoid, two peroxysterols, and a chlorobenzene compound were isolated from the hexane soluble fraction of the methanol extract of dried fruiting bodies of the basidomycetes. Those compounds identifed were 3-hydroxy-20(29)-lupen-28-oic acid (betulinic acid), 5,8-epidioxyergosta-6,22-dien-3-ol(ergosterol peroxide), 5,8-epidioxyergosta-6,9(11),22-trien-3-ol (dehydroperoxyergosterol), and 1,2,4,5-tetrachloro-3,6-dimethoxybenzene. Structural studies were carried out on molecular species of a ceramide and cerebroside isolated from the chloroform soluble fraction of the methanol extract. For ceramide, the major component fatty acids were a-hydroxy fatty acid isomers of $C_{22:00}{\sim}C_{25:00};$ the predominant long-chain bases were trihydroxy sphinganine of $C_{17}{\sim}C_{18}$. The structure of a cerebroside containing mono-sugar was assumed that the long-chain base was $C_{19:2}$ sphingadienine; the major fatty acids were $C_{16}{\sim}C_{15}$ ${\alpha}$-hydroxy fatty acid isomers.

  • PDF

Functional Amino Acids and Fatty Acids for Enhancing Production Performance of Sows and Piglets

  • Kim, Sung Woo;Mateo, Ronald D.;Yin, Yu-Long;Wu, Guoyao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.2
    • /
    • pp.295-306
    • /
    • 2007
  • The growth and health of the fetus and neonate are directly influenced by the nutritional and physiological status of sows. Sows are often under catabolic conditions due to restrict feeding program during pregnancy and low voluntary feed intake during lactation. The current restrict feeding program, which aims at controlling energy intake during gestation, results in an inadequate supply of dietary protein for fetal and mammary gland growth. Low voluntary feed intake during lactation also causes massive maternal tissue mobilization. Provision of amino acids and fatty acids with specific functions may enhance the performance of pregnant and lactating sows by modulating key metabolic pathways. These nutrients include arginine, branched-chain amino acids, glutamine, tryptophan, proline, conjugated linoleic acids, docosahexaenoic acid, and eicosapentaenoic acid, which can enhance conception rates, embryogenesis, blood flow, antioxidant activity, appetite, translation initiation for protein synthesis, immune cell proliferation, and intestinal development. The outcome is to improve sow reproductive performance as well as fetal and neonatal growth and health. Dietary supplementation with functional amino acids and fatty acids holds great promise in optimizing nutrition, health, and production performance of sows and piglets. (Supported by funds from Texas Tech, USDA, NLRI-RDA-Korea, and China NSF).