• Title/Summary/Keyword: Logistics Vehicle Management

Search Result 114, Processing Time 0.027 seconds

Reverse Logistics Process for Electric Vehicle Batteries (전기자동차 배터리 역물류 프로세스 연구)

  • Seo, Dong-Min;Kim, Yong-Soo;Kim, Hyun-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.3
    • /
    • pp.57-70
    • /
    • 2011
  • To address global climate change, various governments are investing in electric vehicle research and, especially in Korea, the application of electric vehicles to public transportation. The lithium batteries used in electric vehicles typically have an expected life cycle of 2-5 years. If electric vehicles become commonly used, they will generate many discarded batteries that could be harmful to the environment. Additionally, lithium batteries are potentially explosive and should be handled appropriately. Thus, reverse logistics issues are involved in handling expired batteries efficiently and safely. Reverse logistics includes the collection, recycling, remanufacturing, and discarding of waste. This study developed a reverse logistics process for electric vehicle batteries after analyzing the as-is process for lead and lithium batteries. It also developed possible disposal regulations for electric vehicle batteries based on current laws regarding conventional batteries.

A Web GPS based Logistics Vehicle Control Management System using MVC Design Patterns (MVC 디자인 패턴을 활용한 Web GPS 기반의 물류차량 출하 관제 시스템)

  • Sim, Choon Bo;Kim, Kyoung Jong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.1
    • /
    • pp.131-142
    • /
    • 2010
  • In this paper, we propose a web GPS based logistics vehicle control management system using MVC design patterns. The proposed system is designed by applying design patterns of object oriented modeling called mini-architecture to enhance reliability of software as well as promote stability of overall system design. In addition, we can get a position information by means of the GPS embedded in PDA and communicate between client and monitoring server using CDMA network so that the position of client can be identified directly by the map service. The system provides an moving object indexing technique which extends the existing TB-tree to manage and retrieve a transporting trajectory of logistics efficiently. Finally, with development of the logistics vehicle control service called WG-LOGICS system, we can verify the usefulness of our system which is able for monitoring a vehicle preparation, allocating registration, loading a burden, transfer path, and destination arrival in real world.

Realization of Logistics Safety Management System By Operating Advanced Vehicle Safety Management Device (첨단 차량 안전관리장치 운영을 통한 물류 안전관리시스템 구현)

  • Moon, Hoi-Kwon;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.20 no.2
    • /
    • pp.1-8
    • /
    • 2018
  • This study aims to provide a real-time information to the driver by effectively operating the advanced safety device attached to the freight vehicle, thereby minimizing insecure behavior of the driver such as speeding, rapid acceleration, sudden braking, And improve driving habits to prevent accidents and save energy. Advanced safety equipment is a device that warns the driver that the vehicle leaves the driving lane regardless of the intention of the driver and reduces the risk of traffic accidents by mitigating or avoiding collision by detecting a frontal collision during driving.The main contents of this report are as follows: In case of installing a warning device on a lane departing vehicle (excluding a light vehicle) and a lorry or special vehicle with a total weight exceeding 3.5 tonnes, the driver must continue to operate unless the driver releases the function.In addition, when the automatic emergency braking system is installed, the structure should be such that the braking device is operated automatically after warning the driver when the risk of collision with the running or stopped vehicle in the same direction is detected in front of the driving lane.

Design and Implementation of Web based Traceability Management System for Logistics Vehicle using GPS and RFID (GPS 및 RFID를 이용한 웹 기반 물류차량 이력관리 시스템 설계 및 구현)

  • Jung, Se-Hoon;Sim, Chun-Bo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2737-2746
    • /
    • 2010
  • Recently, Logistics industry has emerged a new u-logistics paradigm combines USN / RFID technology. In this paper offers a vehicle history Web-based logistics management system based on the u-logistics paradigm. The design of this system is considered all events processes as a form of recycling and entire system is to modeling based UML of object oriented. Also It was undergone some process to make sure by logistics vehicles identified that RFID based was identified vehicle logistics. To identify logistics vehicle based RFID, identified the logistics vehicles is a process that will determine. The implementation method designed the interface based web which uses in the manager to C/S methods, consideration of the mobility of the system user implements the user GUI based PDA. As well as, In this paper was separated customer, manufacturer, distributor, administrator, drivers, respectively and focuses to raise a system reusability which is implementation by separately for each feature.

Design and Implementation of e-Logistics System supporting Efficient Moving Objects Trajectory Management (효율적인 차량 궤적 관리를 지원하는 물류관리시스템의 설계 및 구현)

  • Lee, Eung-Jae;Nam, Kwang-Woo;Ryu, Keun-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.2
    • /
    • pp.30-41
    • /
    • 2006
  • This paper proposes an e-logistics system supporting efficient vehicle moving trajectory management. Recent advances in wireless communications have given rise to a number of location-based services including logistics vehicle tracking, cellular phone user's location finding, and location-based commerce. Logistics systems typically entail tracking vehicles for purposes of the logistics center knowing the whereabouts of the vehicles and/or consignments. Moreover, storing and managing location trajectory of continuously moving vehicles and consignments is necessary for supporting efficient logistics plan and consignment. The proposed system is able to manage spatial objects in GIS as well as logistic information in the mobile environment. And for the efficiently managing and retrieving of transporting trajectory of logistics, we extend previous moving object indexing method, TB-Tree, to use multi-version framework and evaluate data updating performance. It is able to apply the proposed method to develop mobile contents services based on continuously changing location of moving object in the mobile environment.

  • PDF

Development of Moving Object Management System for Vehicle Monitoring/Control Management in e-Logistics Environment (e-Logistics 환경에서 차량관제를 위한 이동체 관리 시스템 개발)

  • Kim, Dong-Ho;Lee, Hye-Jin;Lee, Hyun-Ah;Kim, Jin-Suk
    • The KIPS Transactions:PartD
    • /
    • v.11D no.6
    • /
    • pp.1231-1238
    • /
    • 2004
  • By virtue of the advanced Internet technology, there are lots of research works for e-Logistics which means virtual business activities or service architecture based on the Internet among the logistics companies. Because e-Logistics environment requires more dynamic and global service area, conventional vehicle monitoring and control technologies innate many problems in terms of Integrating, storing and sharing the location data. It needs the development of the moving object technology in order to resolve efficiently the limitations. In this paper, we propose the whole components of the moving object management system which supports the advanced sharing the location information as well as the integration of location data. We are sure the suggested system can be adopted to construct the next generation-logistics vehicle monitoring and control system by reducing the overall cost and time.

Generalized Vehicle Routing Problem for Reverse Logistics Aiming at Low Carbon Transportation

  • Shimizu, Yoshiaki;Sakaguchi, Tatsuhiko
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.2
    • /
    • pp.161-170
    • /
    • 2013
  • Deployment of green transportation in reverse logistics is a key issue for low carbon technologies. To cope with such logistic innovation, this paper proposes a hybrid approach to solve practical vehicle routing problem (VRP) of pickup type that is common when considering the reverse logistics. Noticing that transportation cost depends not only on distance traveled but also on weight loaded, we propose a hierarchical procedure that can design an economically efficient reverse logistics network even when the scale of the problem becomes very large. Since environmental concerns are of growing importance in the reverse logistics field, we need to reveal some prospects that can reduce $CO_2$ emissions from the economically optimized VRP in the same framework. In order to cope with manifold circumstances, the above idea has been deployed by extending the Weber model to the generalized Weber model and to the case with an intermediate destination. Numerical experiments are carried out to validate the effectiveness of the proposed approach and to explore the prospects for future green reverse logistics.

Case Study on the continuous pickup and delivery vehicle routing problem in Multi-level Logistic Network based on S automobile Part Logistics Process (다단계 물류 네트워크에서 A/S 부품 집화 및 배송이 연속적으로 발생하는 문제에 관한 사례연구 -자동차 부품 물류 프로세스를 중심으로-)

  • Song, Jun-Woo;Kim, Kyung-Sup;Jeong, Suk-Jae
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.2
    • /
    • pp.193-204
    • /
    • 2013
  • The growing logistics strategy of a company is to optimize their vehicle route scheduling in their supply chain system. It is very important to analyze for continuous pickups and delivery vehicle scheduling. This paper is a computational study to investigate the effectiveness of continuous pickups and delivery vehicle routing problems. These scheduling problems have 3 subproblems; Inbound Vehicle Routing Problem with Makespan and Pickup, Line-haul Network Problem, and Outbound Vehicle Routing Problem with Delivery. In this paper, we propose 5 heuristic Algorithms; Selecting Routing Node, Routing Scheduling, Determining Vehicle Type with Number and Quantity, and Modification Selecting Routing Node. We apply these Algorithms to S vehicle company. The results of computational experiments demonstrate that proposed methods perform well and have better solutions than other methods considering the basic time and due-date.

A Study on the Improvement of Load Balance for Materials Supply Worker in Automobile Assembly Line (자동차 조립공정 부품공급 작업자별 부하밸런스 평준화 알고리즘 연구)

  • Jang, Jung-Hwan;Jang, Jing-Lun;Quan, Yu;Jho, Yong-Chul;Kim, Yu-Seong;Bae, Sang-Don;Kang, Du-Seok;Lee, Jae-Woong;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.4
    • /
    • pp.107-114
    • /
    • 2016
  • The efficiency of the purchasing and procurement logistics is important in automotive industry. The rationalization of production system is directly impact on productivity and quality. For this reason importance of logistics is high. Despite we are continuously making effort, our country are still below the level than developed country on logistics efficiency. Rising labor costs is an important factor in increasing logistics costs. So workforce reduction in logistics department is a large part. We deal with A-company inbound logistics, especially procurement logistics in automotive logistics as research object. So in this study we do research on work load balance about workers. We do research on 1,475 kinds of components in procurement process. We applied work load balance algorithm on chassis, final, sequence, trim warehouses workers. According to number of workers and average M/H, algorithm is applied in two ways. After applied work load balance algorithm we reduced numbers of workers from 28 to 20 and improved worker load balance rate from 47.1% to 93.7%.

A Study on the Effects of Flexible Operation of Imported Grain Transportation Vehicles on Logistics Costs by Considering Empty Transfer Rates (공차율을 고려한 유연한 수입곡물 화물차운영이 물류비용에 미치는 영향에 관한 연구)

  • Kim, Byeong Chan;Yang, Dae Yong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.4
    • /
    • pp.193-203
    • /
    • 2012
  • This study analyzed regular transportation costs between port warehouses and processing plants and between processing plants and central distribution centers and further transportation costs relations according to empty transfer rates in each circulation by examining the distribution routes of imported grain including wheat, barley, corn, and soybean, namely port warehouses, processing plants, and central distribution centers. Based on the results, the study compared and reviewed the logistics transportation costs. The analysis results of the alternative model show that logistics operational costs could be considerably cut down by introducing a flexible vehicle transportation operational method, which is to change the vehicle loading parts for proper substitute transportation after unloading and transport them to other locations such as central distribution centers instead of returning empty, as an alternative to high operational costs deriving from empty vehicle operation in each circulation after unloading items in case of transportation of imported grain and processed items. The results allow for a more realistic approach to general problems with large-scale distribution network operation and provide a theoretical foundation to serve as a guide to establish policies for corporate operation of imported grain logistics systems.