• Title/Summary/Keyword: Logistic regression-analysis

Search Result 4,398, Processing Time 0.026 seconds

The Effectiveness Validation of Psychosocial Risk Management Plans in an Organizational Working Environment Using Logistic Regression Analysis (로지스틱 회귀분석을 이용한 조직 근로환경에서의 심리사회적 위험관리 방안의 효과 검증)

  • Kim, Soo-Yun;Han, Seung-Jo;Lee, Dong-Hyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.78-84
    • /
    • 2021
  • In addition to physical risks such as electrical, chemical, and mechanic ones in the workplace, psychosocial risks are also raising as an important issue in recent years in connection with human rights and work-life balance policies. The purpose of this study is to confirm the degree of effect of the psychosocial risk management plan at the workplace on workers through logistic regression analysis. Input data for logistic regression analysis is the results of a survey of 4,558 people conducted by the Institute for Occupational Safety and Health were used. There are 9 independent variables, including the change a workplace and confidential counseling, and the dependent variable is whether the worker feels the effect on the psychosocial risk management plan. As a result of this study, changes in work organization, dispute resolution procedures, provision of education program, notification of the impact of psychosocial risks on safety and health, and the persons in charge of solving psychosocial problems are shown effective in reducing worker's psychosocial risks. This study drives which of the management plans implemented to reduce the psychosocial risk of workers in the workplace are effective, so it can contribute to the development of psychosocial risk management plans in the future.

Two-Stage Logistic Regression for Cancer Classi cation and Prediction from Copy-Numbe Changes in cDNA Microarray-Based Comparative Genomic Hybridization

  • Kim, Mi-Jung
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.5
    • /
    • pp.847-859
    • /
    • 2011
  • cDNA microarray-based comparative genomic hybridization(CGH) data includes low-intensity spots and thus a statistical strategy is needed to detect subtle differences between different cancer classes. In this study, genes displaying a high frequency of alteration in one of the different classes were selected among the pre-selected genes that show relatively large variations between genes compared to total variations. Utilizing copy-number changes of the selected genes, this study suggests a statistical approach to predict patients' classes with increased performance by pre-classifying patients with similar genetic alteration scores. Two-stage logistic regression model(TLRM) was suggested to pre-classify homogeneous patients and predict patients' classes for cancer prediction; a decision tree(DT) was combined with logistic regression on the set of informative genes. TLRM was constructed in cDNA microarray-based CGH data from the Cancer Metastasis Research Center(CMRC) at Yonsei University; it predicted the patients' clinical diagnoses with perfect matches (except for one patient among the high-risk and low-risk classified patients where the performance of predictions is critical due to the high sensitivity and specificity requirements for clinical treatments. Accuracy validated by leave-one-out cross-validation(LOOCV) was 83.3% while other classification methods of CART and DT performed as comparisons showed worse performances than TLRM.

Arc Detection using Logistic Regression (로지스틱 회기를 이용한 아크 검출)

  • Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.26 no.5
    • /
    • pp.566-574
    • /
    • 2021
  • The arc is one of factors causing electrical fires. Over past decades, various researches have been carried out to detect arc occurrences. Even though frequency analysis, wavelet and statistical features have been used, arc detection performance is degraded due to diverse arc waveforms. On the contray, Deep neural network (DNN) direcly utilizes raw data without feature extraction, based on end-to-end learning. However, a disadvantage of the DNN is processing complexity, posing the difficulty of being migrated into a termnial device. To solve this, this paper proposes an arc detection method using a logistic regression that is one of simple machine learning methods.

Making Thoughts Real - a Machine Learning Approach for Brain-Computer Interface Systems

  • Tengis Tserendondog;Uurstaikh Luvsansambuu;Munkhbayar Bat-Erdende;Batmunkh Amar
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.124-132
    • /
    • 2023
  • In this paper, we present a simple classification model based on statistical features and demonstrate the successful implementation of a brain-computer interface (BCI) based light on/off control system. This research shows study and development of light on/off control system based on BCI technology, which allows the users to control switching a lamp using electroencephalogram (EEG) signals. The logistic regression algorithm is used for classification of the EEG signal to convert it into light on, light off control commands. Training data were collected using 14-channel BCI system which records the brain signals of participants watching a screen with flickering lights and saves the data into .csv file for future analysis. After extracting a number of features from the data and performing classification using logistic regression, we created commands to switch on a physical lamp and tested it in a real environment. Logistic regression allowed us to quite accurately classify the EEG signals based on the user's mental state and we were able to classify the EEG signals with 82.5% accuracy, producing reliable commands for turning on and off the light.

Making a Hazard Map of Road Slope Using a GIS and Logistic Regression Model (GIS와 Logistic 회귀모형을 이용한 접도사면 재해위험도 작성)

  • Kang, In-Joon;Kang, Ho-Yun;Jang, Yong-Gu;Kwak, Young-Joo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.1 s.35
    • /
    • pp.85-91
    • /
    • 2006
  • Recently, slope failures are happen to natural disastrous when they occur in mountainous areas adjoining highways in Korea. The accidents associated with slope failures have increased due to rapid urbanization of mountainous areas. Therefore, Regular maintenance is essential for all slope and needs maintenance of road safety as well as road function. In this study, we take priority of making a database of risk factor of the failure of a slope before assesment and analysis. The purpose of this paper is to recommend a standard of Slope Management Information Sheet(SMIS) like as Hazard Map. The next research, we suggest to pre-estimated model of a road slope using Logistic Regression Model.

  • PDF

The disparity profile of working conditions by the type of employment according to the economic sectors and occupations (임금근로자의 고용형태별 유해요인 노출 격차의 업종별 직종별 분포 특성)

  • Rhee, Kyung-Yong;Kim, Ki-Sik;Yoon, Young-Shik
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.4
    • /
    • pp.197-207
    • /
    • 2013
  • OSHA(Occupational Safety and Health Act) generally regulates employer's business principles in the workplace to maintain safety environment. This act has the fundamental purpose to protect employee's safety and health in the workplace by reducing industrial accidents. Authors tried to investigate the correlation between 'occupational injuries and illnesses' and level of regulation compliance using Survey on Current Status of Occupational Safety & Health data by the various statistical methods, such as generalized regression analysis, logistic regression analysis and poison regression analysis in order to compare the results of those methods. The results have shown that the significant affecting compliance factors were different among those statistical methods. This means that specific interpretation should be considered based on each statistical method. In the future, relevant statistical technique will be developed considering the distribution type of occupational injuries.

Analysis of cause-of-death mortality and actuarial implications

  • Kwon, Hyuk-Sung;Nguyen, Vu Hai
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.6
    • /
    • pp.557-573
    • /
    • 2019
  • Mortality study is an essential component of actuarial risk management for life insurance policies, annuities, and pension plans. Life expectancy has drastically increased over the last several decades; consequently, longevity risk associated with annuity products and pension systems has emerged as a crucial issue. Among the various aspects of mortality study, a consideration of the cause-of-death mortality can provide a more comprehensive understanding of the nature of mortality/longevity risk. In this case study, the cause-of-mortality data in Korea and the US were analyzed along with a multinomial logistic regression model that was constructed to quantify the impact of mortality reduction in a specific cause on actuarial values. The results of analyses imply that mortality improvement due to a specific cause should be carefully monitored and reflected in mortality/longevity risk management. It was also confirmed that multinomial logistic regression model is a useful tool for analyzing cause-of-death mortality for actuarial applications.

The Confidence Band of $ED_{100p}$ for the Simple Logistic Regression Model

  • Cho, Tae Kyoung;Shin, Mi Young
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.581-588
    • /
    • 2001
  • The $ED_{100p}$ is that value of the dose associated with 100p% response rate in the analysis of quantal response data. Brand, Pinnock, and Jackson (1973) studied the confidence bands of $ED_{100p}$ obtained by solving extremal values algebraically on the ellipsoid confidence region of the parameters in the simple logistic regression model. In this paper, we develope and illustrate a simpler method for obtaining confidence bands for $ED_{100p}$ based on the rectangular confidence region of parameters.

  • PDF

사례기반추론을 이용한 다이렉트 마케팅의 고객반응예측모형의 통합

  • Hong, Taeho;Park, Jiyoung
    • The Journal of Information Systems
    • /
    • v.18 no.3
    • /
    • pp.375-399
    • /
    • 2009
  • In this study, we propose a integrated model of logistic regression, artificial neural networks, support vector machines(SVM), with case-based reasoning(CBR). To predict respondents in the direct marketing is the binary classification problem as like bankruptcy prediction, IDS, churn management and so on. To solve the binary problems, we employed logistic regression, artificial neural networks, SVM. and CBR. CBR is a problem-solving technique and shows significant promise for improving the effectiveness of complex and unstructured decision making, and we can obtain excellent results through CBR in this study. Experimental results show that the classification accuracy of integration model using CBR is superior to logistic regression, artificial neural networks and SVM. When we apply the customer response model to predict respondents in the direct marketing, we have to consider from the view point of profit/cost about the misclassification.

  • PDF

An Analysis on Relations between Design Errors Detected during BIM-based Design Validation and the Impacts Using Logistic Regression (로지스틱 회귀분석을 이용한 BIM 설계 검토에 의하여 발견된 설계 오류와 그 영향도간의 관계 분석)

  • Won, Jongsung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.264-265
    • /
    • 2017
  • This paper aims to analyze relations between design errors prevented by building information modeling (BIM)-based design validation and their impacts in order to identify critical consideration factors for successfully implementing BIM-based design validation in the architecture, engineering, and construction (AEC) projects. More than 800 design errors detected by BIM-based design validation in two BIM-based projects in South Korea are categorized according to its causes and work types. The relations between causes and work types of design errors and project delay, cost overrun, low quality, and rework generation that can be caused by the errors are analyzed through conducting logistic regression. Characteristics of each design error are analyzed by conducting face-to-face interviews with practitioners in the two BIM-based projects. As the results, the impacts of design error causes on predicting project delay, cost overrun, low quality, and rework generation were the highest.

  • PDF