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Abstract  

In this paper, we present a simple classification model based on statistical features and demonstrate the successful 

implementation of a brain-computer interface (BCI) based light on/off control system. This research shows study and 

development of light on/off control system based on BCI technology, which allows the users to control switching a lamp 

using electroencephalogram (EEG) signals. The logistic regression algorithm is used for classification of the EEG signal 

to convert it into light on, light off control commands. Training data were collected using 14-channel BCI system which 

records the brain signals of participants watching a screen with flickering lights and saves the data into .csv file for future 

analysis. After extracting a number of features from the data and performing classification using logistic regression, we 

created commands to switch on a physical lamp and tested it in a real environment. Logistic regression allowed us to 

quite accurately classify the EEG signals based on the user's mental state and we were able to classify the EEG signals 

with 82.5% accuracy, producing reliable commands for turning on and off the light. 
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1. Introduction 

In recent years, researches based on BCI have been advancing rapidly. People with disabilities in mobility, 

communication and writing face challenges in their daily lives. BCI technology helps them overcome these 

obstacles and lead a more independent life [1, 2]. The human brain is composed of approximately 86 billion 

neurons. Nowadays with the help of specialized technique electrical signals from 5 up to 96 different points 

on the scalp can be scanned. One of such systems is a device of Emotiv company, which is capable of 

processing data from 5 to 32 different points. The Emotiv Epoc X device we utilized in our study is a cost-

effective system capable of accurately detecting signals from 14 points on the scalp. The device is equipped 

with a wireless headset having a special shape to wear on the scalp. Due to the 14 electrodes the dynamic 

changes of the electrical potentials of the brain activities are scanned, transferred and recorded into files. 

Locations of the electrodes as green circles and their preference points as orange circles are shown in Figure 
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1. Each electrode is named after the area where it is placed on the scalp with reference to where the electrode 

for each area is located. The frontal electrodes (AF3, F7, F3, F4, F8, AF4) generally pick up activity related to 

cognitive processes such as attention, decision-making, and ` memory. The temporal electrodes (T7, T8) are 

associated with auditory processing and the occipital electrodes (O1, O2) are associated with visual processing. 

The central electrodes (FC5, FC6) are involved in motor planning and execution, while the parietal electrodes 

(P7, P8) are associated with spatial processing and sensory integration. 

 

Figure 1. Electrode locations on the scalp 

The human brain generates electrical activity, which can be measured using EEG. The EEG signal is 

recorded and analyzed using various frequency bands, which are used in subsequent data processing and 

analysis. These frequency bands reveal the corresponding brain states and related neural activity which can be 

filtered by band pass filters (BPF). Delta (0.5-4 Hz) brainwaves are the slowest brainwaves and are typically 

associated with deep sleep, unconsciousness, and physical healing. Theta (4-8 Hz) brainwaves are associated 

with a state of relaxation, creativity, insight, and light sleep. They can also be linked to certain types of 

meditative states accompanied by vivid mental imagery. Alpha (8-12 Hz) brainwaves are associated with a 

relaxed, calm state of mind and are related to certain types of meditative states characterized by mental imagery. 

They can also be linked to a state of "alert relaxation". Beta (12-30 Hz) brainwaves are associated with an alert, 

focused state of mind and are typically produced when you are actively engaged in mental activity such as 

problem-solving, decision-making, or critical thinking. Gamma (30-100 Hz) brainwaves are the fastest 

brainwaves and are associated with higher levels of consciousness, spiritual experiences, and moments of 

insight or inspiration. 

BCI directly connects the brain and physical devices and can translate the states of different types of brain 

activities into commands for various types of operations [3-6, 15, 16]. A number of research works are being 

carried out using machine learning techniques to study how the brain controls various activities such as 

movement of the limbs, speech, attention, relaxation and other behaviors [7, 8].  

This article covers the following topics: 1) general overview of brain-computer interface, 2) methods for 

collecting data for research studies and how to preprocess the data, 3) filtering and extracting the features of 

the collected EEG data, 4) explains the machine learning algorithm of logistic regression, which was optimized 

for performance and finally, the research findings and conclusions are presented.  

 

2. Methods for Collecting Training Data 

The main goal of our study is to control some physical object with commands received as a result of 
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processing a logistic regression algorithm using data from BCI, which transforms the information received 

from the electrode attached to the scalp with a certain number of channels. The method tested in [2, 3, 8-10] 

was used to extract differences in human thoughts. The main aim of this method is to present two images to 

participants in a sequential order with an interval of 6 seconds between them. One image shows the lights 

turned off, while the other image is either black or blank. Subjects see a light that is off and think it as “on” 

and then shift their attention to a blank or black image to focus on a different task. During several experiments, 

three different hypotheses - such as "light off", "light on" and other “normal” variations - were recorded and 

saved in a file for a specific period of time. We tested 2 types of images: first, the image of a “light on” that is 

displayed continuously for 6 seconds, and second, a dynamic image of a “light on” that gradually increases the 

brightness of the light bulb. During the experiment, brain activity was measured on four separate days with the 

participation of five individuals, four men and a woman, aged 20-42 years. Each participant's recording is 

separated by a short “break” interval. Each record consists of 10 trials. Each trial consisted of 6 second of 

“light on” thought followed by 6 second of “normal” thought. Another record involved "light off" thought, 

followed by 6 seconds of "normal" thought, as shown in Figure 2.  

 

Figure 2. Collecting training data process 

 

The data collected from the Emotiv device, consisting of 14 channels, is transmitted to a computer via a 

Bluetooth interface. The received data is then saved as a CSV file using Python. The connections of devices 

used in the test experiments are shown in Figure 3. 

 
Figure 3. Collecting training data 

Durations of recorded data in the experiments for each of five participants are: B.B (1784 seconds), D.B (1784 

seconds), L.Y (1781 seconds), L.O (1781 seconds), and Ts.T (5356 seconds). The total recording time for all 
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participants was 12486 seconds. Afterward, the data in the file was preprocessed, and signal features were 

extracted. Finally, machine learning logistic regression was applied to classify the thoughts.  

 

3. Signal processing and feature extraction 

Since recorded EEG signals are noisy, preprocessing is done before analyzing the signal. EEG recordings 

are affected by the following factors: specific muscle contractions, eye movements or blinks, and external 

electromagnetic waves [11, 12, 16, 17]. These effects can cause unwanted noise in the EEG recording and 

distort the EEG results leading to false conclusions. The Emotiv Epoc device samples each channel at a rate 

of 128 Hz. Usually, BPF is used to remove unwanted signal noise. Therefore, the signals are filtered using 

BPF of range 0.1 - 40 Hz.  

After filtering the signals, we need answers to the questions such as what signals the brain generates during 

"light on", "light off" or "normal" etc. The signals for thoughts "light on", "light off" and "normal" were 

recorded for a period of 6 seconds and then processed separately into 12 features and the "light on" and "light 

off" signals were distinguished from them.  

Figure 4 shows topographic map of data points of the brain electrical signals, where (a) displays the average 

values of 14 data points of the electrical signals recorded during the six-second "light on" thought, while (b) 

shows the average values of the brain signals recorded during the six-second "light off" thought and (c) displays 

the average brain imaging data recorded during 6 seconds period, when a black image “normal” was presented. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 4. Topographic map of different thoughts 
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Based on the image above, it appears that the values of the 14 brain points vary depending on the thoughts 

at different moments in time and that different parts of the brain become more active when a person thinks 

about different things, such as "light on". The first step in the EEG classifier is the requirement to extract 

features from the signal. Usually EEG features are considered in the time or frequency domain. Several 

methods of feature extraction have been considered in the research. It includes: 

 Time characteristics 

 Spectral energy characteristics 

 Statistical properties 

There are many time feature decomposition techniques, among which the most widely used are Eigen Value 

Decomposition (EVD), Independent Component Analysis (ICA), Principal Component Analysis (PCA) and 

Linear Discriminant Analysis (LDA) [1, 2, 13-15].  

In this study, we used statistical analysis calculated from each sample, extracting totally of 168 features 

produced from 12 features × 14 channels for each trial. These 12 features include: 

1. mean(x) – average value. The method of finding mean(x) means to consider the average of n=768 

values of 1 channel for 6 seconds of recording. 

�̅� =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1      (1) 

2. std(x) – standard deviation of the mean. In statistics, the standard deviation is a measure of the amount 

of variability or spread of a set of values around its mean. 

𝑠𝑥 =  √
∑ (𝑥𝑖−�̅�2)𝑛

𝑖

𝑛−1
     (2) 

3. ptp(x) – pick to pick signal amplitude or difference between positive and negative values. 

𝑉𝑝𝑝 =  𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛       (3) 

4. var(x) is the variance of the random variable x, defined as the expected value of the squared difference 

between x and its expected value 

𝑠2 =  √
∑ (𝑥𝑖−�̅�)2𝑛

𝑖

𝑛−1
       (4) 

5. minim(x) - minimum value 

𝑉𝑚𝑖𝑛 = min (𝑥1, 𝑥2. . 𝑥𝑛)         (5) 

6. maxim(x) - maximum value 

𝑉𝑚𝑎𝑥 = max (𝑥1, 𝑥2. . 𝑥𝑛)          (6) 

7. argminim(x) - the position of the minimum value 

8. argmaxim(x) - the position of the maximum value 

9. rms(x) - root mean square. RMS is also called root mean square and is a specific case of general 

average. 

𝑥𝑟𝑚𝑠 = √
1

𝑛
(𝑥1

2 + 𝑥2
2 + ⋯ . +𝑥𝑛

2)   (7) 

10. the sum of the absolute difference 

𝑥𝑎𝑏𝑠 = ∑ |𝑥𝑖 − 𝑥𝑖−1|𝑛
𝑖=1      (8) 

11. skewness - is a measure of the asymmetry or unevenness of the probability distribution of a real-valued 

random variable. The function "skewness(x)" calculates the skewness of the distribution represented 

by the data in variable x. 
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�̃� = 𝐸 [(
𝑋−𝜇

𝜎
)3]     (9) 

12. kurtosis - measures how much a data set deviates from a normal or bell-shaped curve. 

𝐾𝑢𝑟𝑡[𝑥] = 𝐸 [(
𝑋−𝜇

𝜎
)4]   (10) 

Based on the above features, classification was done by logistic regression. 
 

4. Classification algorithms 

In the training phase, offline classification algorithms are trained using EEG data sets of known 

classification. Then, the unclassified EEG data is sent to the classifier, which predicts the class type. After 

preprocessing, we divided the data into epochs consisting of 6 seconds. When creating the epochs, experiments 

were performed with data without any time overlap. 

Here, a total of 12 features were generated and the experiment was carried out with 2 methods of classification 

training. Sequences of realization of the two methods are shown in Figure 5. In the first method, 12 features 

were calculated for each channel and classified basing on total of 168 features, while in the second method, 12 

features were processed for each channel on each of the brain's Delta, Theta, Alpha, Beta, and Gamma 

frequency ranges, and a total of 840 features were used for classification. 

 

 
Figure 5. Classification methods 

 

Logistic regression was used in this study to train classification. In our case, we need to predict the output 

value y, and for logistic regression, y є {0, 1}, that is, we can get two types of output values: 0 or 1. Here, h is 

the hypothesis function, which maps x to y. The following conditions are taken into account. 

0 ≤ ℎ𝜃(𝑥) ≤ 1    (11) 

A sigmoid function is applied to satisfy condition (11). 

ℎ𝜃(𝑥) = 𝑔(𝜃𝑇𝑥)    (12) 

𝑧 = 𝜃𝑇𝑥 = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + 𝜃3𝑥3 + 𝜃4𝑥4 + 𝜃5𝑥5 + 𝜃6𝑥6 + 𝜃7𝑥7 + ⋯ + 𝜃168𝑥168 (13) 

ℎ𝜃(𝑥) = 𝑔(𝑧) =
1

1+𝑒−𝑧 =
1

1+𝑒−𝜃𝑇𝑥
  (14) 

Here, x1-x168 are the features we calculated. 

The function g(z) transforms any real number into the interval (0, 1), making it a useful function for mapping 

to a probability in a given category. ℎ𝜃(𝑥) gives the probability of our output being 1. To obtain a discrete 0 or 

1 class, the output of the prediction function can be converted as follows: 
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ℎ𝜃(𝑥) ≥ 0,5 when 𝑦 = 1 

ℎ𝜃(𝑥) < 0,5 when 𝑦 = 0 

Since there is a need to classify into three types of outcomes, the “One vs All” approach is used to create 

categories. We extracted “light on-normal thought”, “light off-normal thought” and “light on-light off” thoughts 

on each of the 5 participants, and the average training result on a total of 168 features was 82.5%. Below, in 

Table 1 and Table 2 shown results of Method 1.  

Table 1.  Classification accuracy result 

Frequency  

range (Hz) 

Static image based classification Dynamic image based classification 

0.5-30 0.5-40 4.-30 4-60 0.5-30  0.5-40 4.-30 4-60 

Light on-off-norm 0.557 0.57 0.58 0.588 0.946 0.95 0.955 0.95 

Ligh on-norm 0.71 0.71 0.73 0.725 0.99 0.99 0.979 0.976 

Ligh on-off 0.71 0.74 0.71 0.71 0.98 98 0.99 0.99 

Ligh off-norm 0.71 0.696 0.756 0.74 0.94 0.94 0.947 0.948 

 

Table 2.  Confusion matrix of Method 1 

  

Predicted  

"Light on" 

Predicted  

"Light off" 

Predicted  

"Normal" 

Actual "Light on" TP1 - 96 FN1 – 4 FN2 - 4 

Actual "Light off" FP1 - 2 TP2 – 126 FN3 -1 

Actual "Normal" FP2 - 9 FP3 – 2 TP3 -127 

 

The average training results of Method 2 on a total of 840 features was 73.7% and the Table 3 shows 
confusion matrix. 

Table 3.  Confusion matrix of Method 2 

  

Predicted  

"Light on" 

Predicted  

"Light off" 

Predicted  

"Normal" 

Actual "Light on" TP1 – 62 FN1 – 11 FN2 – 31 

Actual "Light off" FP1 – 20 TP2 – 95 FN3 -14 

Actual "Normal" FP2 - 19 FP3 – 0 TP3 -109 

 

5. Conclusion 

In this paper, we presented the simple classification model based on statistical features of EEG signals, 

classified the data using logistic regression and demonstrated the successful implementation of the BCI based 

light on/off control system. During the study five individuals participated in the experiments using Emotiv 

EpocX device to collect brain activity signals from 14 points on the scalp during a cognitive task. Totally have 

been saved data of 12486 seconds in a .csv file. Each participant's record consists of 3 types of thoughts: “light 

on”, “light off” and “normal”.  

Before conducting machine learning, we processed 12 features from the given data and trained a logistic 

regression model. By categorizing the input of each user into one of the 3 types mentioned above, namely 

“light on”, “light off” and “normal”, we were able to achieve an 82.5% accuracy on Method 1. For example, 

when machine learning was done using one person's thoughts of "turn on" and prediction or testing was done 

using the thoughts of a second person, the prediction was reduced to 60%, indicating that the perception of 

"turn on" was different for each participant. 840 feature-based classifications were conducted by computing 

features at each of the brain's Delta, Theta, Alpha, Beta, and Gamma frequency ranges, but the training 
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performance dropped to 73.7% accuracy on Method 2. From the above it can be concluded that some frequency 

ranges are unnecessary or some of the 12 main features do not have a significant effect on the classification. 

When the image is dynamically changed, the classification accuracy increases. 

In the future, by deepening this research based on 32 points of the brain, it is possible to control and operate 

objects aimed at specific goals. A simple example is the design and implementation of a system to solve the 

problems of people with disabilities. 
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