• Title/Summary/Keyword: Logistic analysis

Search Result 4,904, Processing Time 0.029 seconds

A Study on the Improvement of Logistic Support by Performance Based Logistics (성과기반군수(PBL)를 활용한 군수지원 발전방안 연구)

  • Choi, Seok-Cheol
    • Journal of the military operations research society of Korea
    • /
    • v.34 no.2
    • /
    • pp.43-61
    • /
    • 2008
  • Performance based logistics(PBL) is recently studied and applied for enhancing the combat readiness and reducing the life-cycle cost for weapon system in the United States. Therefore, in this paper, we review the issues of logistic support and suggest alternatives to effectively manage the logistic support for weapon system by using performance based logistics, especially during operation and support phase of weapon systems.

On the Performance Analysis of a Logistic regression based transient signal classifier (Logistic Regression 방법을 이용한 천이 신호 식별 알고리즘 및 성능 분석)

  • Heo, Sun-Cheol;Kim, Jin-Young;Yoon, Byoung-Soo;Nam, Sang-Won;Oh, Won-Cheon
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.913-915
    • /
    • 1995
  • In this paper, a transient signal classification system using logistic regression and neural networks is presented, where four neural networks such as MLP, MLP-Class, RBF and LVQ are utilized to classify given transient signals, based on the logistic regression method. Also, some test results with experimental transient signal data are provided.

  • PDF

Preventing the Musculoskeletal Disorders using Association Rule - Based on Result of Multiple Logistic Regression - (연관규칙을 이용한 근골격계 질환 예방 - 다변량 로지스틱 회귀분석의 결과를 기반으로 -)

  • Park, Seung-Hun;Lee, Seog-Hwan
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.4
    • /
    • pp.29-38
    • /
    • 2007
  • We adapted association rules of data mining in order to investigate the relation among the factors of musculoskeletal disorders and proposed the method of preventing the musculoskeletal disorders associated with multiple logistic regression in previous study. This multiple logistic regression was difficult to establish the method of preventing musculoskeletal disorders in case factors can't be managed by worker himself, i.e., age, gender, marital status. In order to solve this problem, we devised association rules of factors of musculoskeletal disorders and proposed the interactive method of preventing the musculoskeletal disorders, by applying association rules with the result of multiple logistic regression in previous study. The result of correlation analysis showed that prevention method of one part also prevents musculoskeletal disorders of other parts of body.

Semiparametric kernel logistic regression with longitudinal data

  • Shim, Joo-Yong;Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.2
    • /
    • pp.385-392
    • /
    • 2012
  • Logistic regression is a well known binary classification method in the field of statistical learning. Mixed-effect regression models are widely used for the analysis of correlated data such as those found in longitudinal studies. We consider kernel extensions with semiparametric fixed effects and parametric random effects for the logistic regression. The estimation is performed through the penalized likelihood method based on kernel trick, and our focus is on the efficient computation and the effective hyperparameter selection. For the selection of optimal hyperparameters, cross-validation techniques are employed. Numerical results are then presented to indicate the performance of the proposed procedure.

Analysis of Factors Affecting Hiking Trails by Logistic Regression Analysis: Focus on Golupogisan~Saenggyelyeong (로지스틱회귀분석을 이용한 등산로 훼손요인 분석: 고루포기산~생계령 대상으로)

  • Choi, Taeheon;Kim, Joonsoon
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.4
    • /
    • pp.478-485
    • /
    • 2018
  • The study was carried out to select natural environmental factors that affect damage to hiking paths and to provide directions for facility management of hiking paths by a logistic regression analysis. The study sites is a total of 123 sample sites that located in the Baekdudaegan Guropo-Gisaengnyeong hiking trails. The variables used in the analysis model included mountain trail damage, forest type, herb of soil and crown density obtained through a field survey and included slope, soil and rock exposure obtained through FGIS. A logistic regression analysis of 43 sites and 80 undeveloped sites, 4 elements were selected for slope, herb of soil, soil and rock exposure. The slope and the herb of soil were positively correlated and the exposure of rock was negative. Soil has shown a positive correlation with its low missile and high sand ratio Saturn. Therefore, the management of the mountain hiking paths facilities should be established and restored considering the slope, herb of soil, soil and rock exposure.

A Study of Effect on the Smoking Status using Multilevel Logistic Model (다수준 로지스틱 모형을 이용한 흡연 여부에 미치는 영향 분석)

  • Lee, Ji Hye;Heo, Tae-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.1
    • /
    • pp.89-102
    • /
    • 2014
  • In this study, we analyze the effect on the smoking status in the Seoul Metropolitan area using a multilevel logistic model with Community Health Survey data from the Korea Centers for Disease Control and Prevention. Intraclass correlation coefficient (ICC), profiling analysis and two types of predicted value were used to determine the appropriate multilevel analysis level. Sensitivity, specificity, percentage of correctly classified observations (PCC) and ROC curve evaluated model performance. We showed the applicability for multilevel analysis allowed for the possibility that different factors contribute to within group and between group variability using survey data.

Analysis of factors for intention to perform cardiopulmonary resuscitation (심폐소생술 실시의사에 대한 요인분석)

  • Leem, Seung-Hwan
    • The Korean Journal of Emergency Medical Services
    • /
    • v.17 no.3
    • /
    • pp.169-179
    • /
    • 2013
  • Purpose: The performance rate to perform Cardiopulmonary Resuscitation (CPR) by witness in out-of-hospital Cardiac Arrest (OHCA) is very low in South Korea. To prevent the death caused by OHCA, it is important to encourage the witness to perform CPR actively. The purpose of the study is to investigate the influencing factors to affect bystander CPR rate. Methods: I conducted a questionnaire survey from 25 February to 4 March, 2013, receiving responses from 517 people in Korea. The questionnaire included social demographic factors, history of heart disease, knowledge of CPR, and the reliability of emergency medical service (EMS). A logistic regression analysis was conducted. Results: Among the 517 respondents, 294 (57.4%) had intention of performing CPR. Multiple logistic regression analysis found the following significant predictors of CPR intention: gender (odds ratio [OR] = 0.390), age (OR = 1.024), religion (OR = 0.843), and knowledge of CPR (OR = 4.734). Conclusion: This study indicated that the strongest predictor is knowledge of CPR. Therefore, it would be helpful to teach CPR nationwide to encourage performing CPR. In addition, effect of CPR education in religious facilities is necessary.

A Production Method of Landslide Hazard Map by Combining Logistic Regression Analysis and AHP(Analytical Hierarchy Process) Approach Selecting Target Sites for Non-point Source Pollution Management Using Analytic Hierarchy Process

  • Lee, Yong-Joon;Park, Geun-Ae;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.3
    • /
    • pp.63-68
    • /
    • 2007
  • The LRA(Logistic Regression Analysis) conducts a quantitative analysis by collecting a lot of samples and the AHP(Analytic Hierarchy Program) makes use of expert decision influenced by subjective judgment to a certain degree. This study is to suggest a combination method in mapping landslide hazard by giving equal weight for the result of LRA and AHP. Topographic factors(slope, aspect, elevation), soil dram, soil depth and land use were adopted to classify landslide hazard areas. The three methods(LRA, AHP, the combined approach) was applied to a $520km^2$ region located in the middle of South Korea which have occurred 39 landslides during 1999 and 2003. The suggested method showed 58.9% matching rate for the real landslide sites comparing with the classified areas of high-risk landslide While LRA and AHP Showed 46.1% and 48.7% matching rates respectively. Further studies are recommended to find the optimal combining weight of LRA and AHP with more landslide data.

A comparison of Multilayer Perceptron with Logistic Regression for the Risk Factor Analysis of Type 2 Diabetes Mellitus (제2형 당뇨병의 위험인자 분석을 위한 다층 퍼셉트론과 로지스틱 회귀 모델의 비교)

  • 서혜숙;최진욱;이홍규
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.369-375
    • /
    • 2001
  • The statistical regression model is one of the most frequently used clinical analysis methods. It has basic assumption of linearity, additivity and normal distribution of data. However, most of biological data in medical field are nonlinear and unevenly distributed. To overcome the discrepancy between the basic assumption of statistical model and actual biological data, we propose a new analytical method based on artificial neural network. The newly developed multilayer perceptron(MLP) is trained with 120 data set (60 normal, 60 patient). On applying test data, it shows the discrimination power of 0.76. The diabetic risk factors were also identified from the MLP neural network model and the logistic regression model. The signigicant risk factors identified by MLP model were post prandial glucose level(PP2), sex(male), fasting blood sugar(FBS) level, age, SBP, AC and WHR. Those from the regression model are sex(male), PP2, age and FBS. The combined risk factors can be identified using the MLP model. Those are total cholesterol and body weight, which is consistent with the result of other clinical studies. From this experiment we have learned that MLP can be applied to the combined risk factor analysis of biological data which can not be provided by the conventional statistical method.

  • PDF

Factors Influencing Adolescent Binge Drinking: Focused on Environmental Variables (한국 청소년 폭음 영향 요인: 환경 변인 중심으로)

  • Jinhwa, Lee;Min, Kwon;Eunjeong, Nam
    • Journal of the Korean Society of School Health
    • /
    • v.35 no.3
    • /
    • pp.133-142
    • /
    • 2022
  • Purpose: The purpose of the study was to investigate the effect of the environment on adolescent binge drinking. Methods: The study was designed as a cross-sectional study. Using statistics from the 17th (20201) Korea Youth Risk Behavior Web-based Survey, the raw data target population was 2,629,588 people, and the sample group used for analysis as the final data was 54,848 people. A Rao-scott 𝑥2 test and univariate multinomial logistic regression analysis were performed using IBM SPSS 27.0. Results: In the results of univariate logistic regression analysis and multivariate logistic regression analysis, common related variables were gender, school level, academic achievement, sleep satisfaction, current smoking, daily smoking, and alcohol education experience. Conclusion: As a result of confirming the factors influencing binge drinking in Korean adolescents, some variables that increase the possibility of problematic drinking behavior in the socio-environmental areas such as individuals, communities, and national policies were identified. For effective prevention and intervention, it is necessary to develop programs to build a healthy environmental support system with support from national policies, including individuals, peer groups, and communities.