• Title/Summary/Keyword: Logical Approach

Search Result 293, Processing Time 0.024 seconds

Improvement of Airfield Concrete Pavement Evaluation Method (공항 콘크리트 포장 평가방법 개선 연구)

  • Eom, Byung-Sik;Park, Kyung-Bu;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.2 no.3
    • /
    • pp.155-165
    • /
    • 2000
  • Periodical evaluations of the airfield pavement are necessary to provide the ability for the existing pavement to support the increasing volume of air traffic. Also, the evaluation of the existing Pavement condition is necessary for the decision of the maintenance strategy. For this reason, airport pavements in Korea have been evaluated every five years currently. It was known, however, that the current pavement evaluation methodology was not logical and practical. The purpose of this study is to compare the current pavement evaluation method with design chart to the mechanistic approach used in other advanced countries. As a result of this study the mechanistic approach is found to be more logical than the current method.

  • PDF

A Systems Engineering Approach to Implementing Hardware Cybersecurity Controls for Non-Safety Data Network

  • Ibrahim, Ahmad Salah;Jung, Jaecheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.101-114
    • /
    • 2016
  • A model-based systems engineering (MBSE) approach to implementing hardware-based network cybersecurity controls for APR1400 non-safety data network is presented in this work. The proposed design was developed by implementing packet filtering and deep packet inspection functions to control the unauthorized traffic and malicious contents. Denial-of-Service (DoS) attack was considered as a potential cybersecurity issue that may threaten the data availability and integrity of DCS gateway servers. Logical design architecture was developed to simulate the behavior of functions flow. HDL-based physical architecture was modelled and simulated using Xilinx ISE software to verify the design functionality. For effective modelling process, enhanced function flow block diagrams (EFFBDs) and schematic design based on FPGA technology were together developed and simulated to verify the performance and functional requirements of network security controls. Both logical and physical design architectures verified that hardware-based cybersecurity controls are capable to maintain the data availability and integrity. Further works focus on implementing the schematic design to an FPGA platform to accomplish the design verification and validation processes.

A Modified Metric of FMEA for Risk Evaluation Based on ASIL of Safety System (ASIL에 기초하여 수정된 안전시스템 FMEA 위험평가척도)

  • Baek, Myoung-Sig;Jang, Hyeon Ae;Kwon, Hyuck Moo
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.4
    • /
    • pp.543-562
    • /
    • 2014
  • Purpose: The purpose of this study is to suggest a modified approach that compensates some shortcomings of RPN with relevant strength of ASIL for Safety System and suggests systematic and logical approach for FMEA. Methods: By comparing the objectives, determination procedures, and key conceptual differences of RPN and ASIL, a refined method of risk evaluation and a new risk metric are devised. Results: While the traditional FMEA provides only rough evaluation of relative risk for each failure, the proposed method compensates its shortcomings with relevant strength of ASIL and provides a more logical and practical procedure of risk evaluation. Conclusion: The new metric RPM provides not only a comparative priority rank but also the degree of physical seriousness. Besides, it may have even more benefits for various applications if the severity can be expressed as mone tary amount of losses.

A study of the types of students' justification and the use of dynamic software (학생들의 정당화 유형과 탐구형 소프트웨어의 활용에 관한 연구)

  • 류희찬;조완영
    • Journal of Educational Research in Mathematics
    • /
    • v.9 no.1
    • /
    • pp.245-261
    • /
    • 1999
  • Proof is an essential characteristic of mathematics and as such should be a key component in mathematics education. But, teaching proof in school mathematics have been unsuccessful for many students. The traditional approach to proofs stresses formal logic and rigorous proof. Thus, most students have difficulties of the concept of proof and students' experiences with proof do not seem meaningful to them. However, different views of proof were asserted in the reassessment of the foundations of mathematics and the nature of mathematical truth. These different views of justification need to be reflected in demonstrative geometry classes. The purpose of this study is to characterize the types of students' justification in demonstrative geometry classes taught using dynamic software. The types of justification can be organized into three categories : empirical justification, deductive justification, and authoritarian justification. Empirical justification are based on evidence from examples, whereas deductive justification are based logical reasoning. If we assume that a strong understanding of demonstrative geometry is shown when empirical justification and deductive justification coexist and benefit from each other, then students' justification should not only some empirical basis but also use chains of deductive reasoning. Thus, interaction between empirical and deductive justification is important. Dynamic geometry software can be used to design the approach to justification that can be successful in moving students toward meaningful justification of ideas. Interactive geometry software can connect visual and empirical justification to higher levels of geometric justification with logical arguments in formal proof.

  • PDF

Essential Logical Model Approach in Analysis and Design for Patient Management and Accounting System : A Case Study (본질적 논리모형에 근거한 원무관리시스템의 분석과 설계)

  • 김명기
    • Health Policy and Management
    • /
    • v.4 no.2
    • /
    • pp.111-125
    • /
    • 1994
  • In developing total hospital information system, large amount of time and expense are to be spent while its results are likely to lead itself to end-users' dissatisfaction. Some of the main complaints on the part of end-users come from insufficient consideration of end-users environment as well as inappropriate representation of their requirement in the system alalysis and design. This papre addresses some advantages of Essential Logical Modeling Process for better analysis and design, explaining by example the developmental process of the Patent Management and Accounting System for a tertiary care hospital. In the case, the Essential Model, suggested by McMenamin and Palmer, proved to be an effective tool for clear separation of analysis and design phase and for better communication among system developers and with end-users. The modeling process itself contributed to better program modularity as well, shown in a Structured Chart. Difficulties in learning how to identify' essential activities' for the modeling practice were experienced in the beginnins stage, which were, however, overcome by elaborating some heuristic guideling and by rdferring to necessary tools including State Transition Diagram, Control Flow Diagram, and so many. While full evaluation of the Essential Model usag remains to wait till the completion of the case project, its strengt in making clear distinction between analysis and design phase was enough to be attractive to system analysts. The model concepts are open to many further application fields, particularly such areas as business re engineering, process remodeling, office automation, and organizational restructuring.

  • PDF

Scalable Service Placement in the Fog Computing Environment for the IoT-Based Smart City

  • Choi, Jonghwa;Ahn, Sanghyun
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.440-448
    • /
    • 2019
  • The Internet of Things (IoT) is one of the main enablers for situation awareness needed in accomplishing smart cities. IoT devices, especially for monitoring purposes, have stringent timing requirements which may not be met by cloud computing. This deficiency of cloud computing can be overcome by fog computing for which fog nodes are placed close to IoT devices. Because of low capabilities of fog nodes compared to cloud data centers, fog nodes may not be deployed with all the services required by IoT devices. Thus, in this article, we focus on the issue of fog service placement and present the recent research trends in this issue. Most of the literature on fog service placement deals with determining an appropriate fog node satisfying the various requirements like delay from the perspective of one or more service requests. In this article, we aim to effectively place fog services in accordance with the pre-obtained service demands, which may have been collected during the prior time interval, instead of on-demand service placement for one or more service requests. The concept of the logical fog network is newly presented for the sake of the scalability of fog service placement in a large-scale smart city. The logical fog network is formed in a tree topology rooted at the cloud data center. Based on the logical fog network, a service placement approach is proposed so that services can be placed on fog nodes in a resource-effective way.

An Approach for the Uncertainty Evaluation of the Overall Result from Replications of Measurement: Separately Combining Individual Uncertainty Components According to their 'systematic' and 'random' Effects

  • Kim, In Jung;Kim, Byungjoo;Hwang, Euijin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1057-1060
    • /
    • 2014
  • In our previous articles, an approach has been proposed for the evaluation of the uncertainty of overall result from multiple measurements. In the approach, uncertainty sources were classified into two groups: the first including those giving same 'systematic' effect on each individual measurement and the second including the others giving 'random' effect on each individual measurement and causing a variation among individual measurement results. The arithmetic mean of the replicated measurements is usually assigned as the value for the overall result. Uncertainty of the overall result is determined by separately evaluating and combining an overall uncertainty from sources of the 'systematic' effect and another overall uncertainty from sources of the 'random' effect. This conceptual approach has been widely adopted in chemical metrology society. In this study, further logical proof with more detailed mathematical expressions is provided on the approach.

On the design method of physical architecture based on the Design Structure Matrix (DSM) approach (물리적 아키텍처 설계에 대한 DSM 방법론 적용 사례 연구)

  • Choi, Sang Wook;Choi, Sang Taik;Jung, Yun Ho;Jang, Jae Deok
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.8 no.1
    • /
    • pp.21-28
    • /
    • 2012
  • Development of the system that has required performance is the most important figure and that is the key of project succeed. In order to perform that, systems engineering has come to the fore as a solution. In each step of system engineering process, particularly, requirement analysis and derivation, logical solution, architecture design step are known to affect many of the function and efficiency. Of these, this paper focus on architecture design. We introduce methodology for physical architecture design by applying DSM(Design Structure Matrix) methodology which is based on result of logical solution from MBSE methodology.

A Study on the Expert System with Three State Inference & Rule Verification (삼상태 추론과 룰 검증이 가능한 전문가 시스템에 관한 연구)

  • Son, Dong-Wook;Park, Young-Moon;Yoon, Ji-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.341-344
    • /
    • 1991
  • Rules in expert system have meaning of assigning never-happen-minterms. Overall logical relations of variables can be achived by making all prime implicants of never-happen-minterms. From prime implicants, two tables, which are necessary in the process of inference, are constructed. There are two inferencing modes. One excutes inference only one variable which the user is interested in, and the other excutes inference all variables simultaneously. Outputs of inference have not only 'true' or 'false' but also 'unknown' which is different from conventional expert system. In this paper, an efficient approach is presented, which can check logical inconsistency in knowledge base and contradiction between input facts and rules. The methods in the paper may be available in the field of diagnosis and alarm processing.

  • PDF

Applying A Matrix-Based Inference Algorithm to Electronic Commerce

  • Lee, kun-Chang;Cho, Hyung-Rae
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.353-359
    • /
    • 1999
  • We present a matrix-based inference alorithm suitable for electronic commerce applications. For this purpose, an Extended AND-OR Graph (EAOG) was developed with the intention that fast inference process is enabled within the electronic commerce situations. The proposed EAOG inference mechanism has the following three characteristics. 1. Real-time inference: The EAOG inference mechanism is suitable for the real-time inference because its computational mechanism is based on matric computation.2. Matrix operation: All the subjective knowledge is delineated in a matrix form, so that inference process can proceed based on the matrix operation which is computationally efficient.3. Bi-directional inference: Traditional inference method of expert systems is based on either forward chaining or backward chaining which is mutually exclusive in terms of logical process and exclusive in terms of logical process and computational efficiency. However, the proposed EAOG inference mechanism is generically bi-directional without loss of both speed and efficiency. We have proved the validity of our approach with several propositions and an illustrative EC example.

  • PDF