• 제목/요약/키워드: Lock-in region

검색결과 57건 처리시간 0.023초

진동 유동장에서 원형 실린더의 lock-on 해석 (Lock-on states of a circular cylinder in the oscillatory flow)

  • 김원태;성재용;유정열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.245-248
    • /
    • 2002
  • Vortex lock-on or resonance in the flow behind a circular cylinder is visualized by a time-resolved PIV when a single frequency oscillation is superimposed on the mean incident velocity. Measurements are made of the $K{\'{a}}rm{\'{a}}n$ vortices in the wake-transition regime at the Reynolds number 360. Basically, natural shedding state is observed to compare with lock-on state. Wake motion by the change of the shedding frequency of lock-on state is investigated. When lock-on occurs, the vortex shedding frequency is found to be half the oscillation frequency as expected from previous experiments. The physical flow phenomena of natural shedding and lock-on states are analyzed with physical parameters of recirculation and vortex formation region. Consequently, it is found that the change of wake bubble plays an important role in the flow at the lock-on state. Vortex formation region is also actively changed like recirculation region as the lock-on occurs. Therefore, it is deduced that the recirculation region is closely related with the vortex formation region.

  • PDF

진동하는 원주주위 유동의 직접수치해석 (Direct Numerical Simulation of the Flow Past an Oscillating Circular Cylinder)

  • 강신정;타나하시 마모루;미야우치 토시오;이영호
    • 한국전산유체공학회지
    • /
    • 제6권4호
    • /
    • pp.26-34
    • /
    • 2001
  • The flow past a circular cylinder forced to vibrate transversely is numerically simulated by solving the two-dimensional Navier-Stokes equations modified by the vibration velocity of a circular cylinder at a Reynolds number of 164. The higher-order finite difference scheme is employed for the spatial discretization along with the second order Adams-Bashforth and the first order backward-Euler time integration. The calculated cylinder vibration frequency is between 0.60 and 1.30 times of the natural vortex-shedding frequency. The calculated oscillation amplitude extends to 25% of the cylinder diameter and in the case of the lock-in region it is 60%. It is made clear that the cylinder oscillation has influence on the wake pattern, the time histories of the drag and lift forces, power spectral density and phase diagrams, etc. It is found that these results include both the periodic (lock-in) and the quasi-periodic (non-lock-in) state. The vortex shedding frequency equals the driving frequency in the lock-in region but is independent in the non-lock-in region. The mean drag and the maximum lift coefficient increase with the increase of the forcing amplitude in the lock-in state. The lock-in boundaries are also established from the present direct numerical simulation.

  • PDF

진동하는 원주주위 유동의 직접수치해석 (Direct Numerical Simulation of the Flow Past an Oscillating Circular Cylinder)

  • 강신정;;;남청도;이영호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 춘계 학술대회논문집
    • /
    • pp.181-188
    • /
    • 2001
  • The flow past a circular cylinder forced to vibrate transversely is numerically simulated by solving the two-dimensional Wavier-Stokes equations modified by the vibration velocity of a circular cylinder at a Reynolds number of 164. The higher-order finite difference scheme is employed for the spatial discretization along with the second order Adams-Bashforth and the first order backward-Euler time integration. The calculated cylinder vibration frequency is between 0.60 and 1.30 times of the natural vortex-shedding frequency. The calculated oscillation amplitude extends to $25\%$ of the cylinder diameter and in the case of the lock-in region it is $60\%$. It is made clear that the cylinder oscillation has influence on the wake pattern, the time histories of the drag and lift forces, power spectral density and phase diagrams, etc. It is found that these results include both the periodic (lock-in) and the quasi-periodic (non-lock-in) state. The vortex shedding frequency equals the driving frequency in the lock-in region but is independent in the non-lock-in region. The mean drag and the maximum lift coefficient increase with the increase of the forcing amplitude in the lock-in state. The lock-in boundaries are also established from the present direct numerical simulation.

  • PDF

Effect of lock-on frequency on vortex shedding in the cylinder wake

  • Yoo Jung Yul;Sung Jaeyong;Kim Wontae
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2001년도 Proceedings of 2001 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.86-99
    • /
    • 2001
  • Vortex lock-on or resonance in the flow behind a circular cylinder is investigated from a time-resolved PIV when a single frequency oscillation is superimposed on the mean incident velocity. Measurements are made of the $K\acute{a}rm\acute{a}n$ and streamwise vortices in the wake-transition regime at the Reynolds number 360. Streamwise vortices at the lock-on and natural shedding states are observed, as well as the changes in the wake region with the change of the shedding frequency of lock-on state. When lock-on occurs, the vortex shedding frequency is found to be half the oscillation frequency as expected from previous experiments. At the lock-on state, the $K\acute{a}rm\acute{a}n$ vortices are observed to be more disordered by the increased strength and spanwise wavelength of the streamwise vortices, which leads to a strong three-dimensional motion. Recirculation and vortex formation region at the lock-on state is reduced as the oscillating frequency is increased. By comparing the Reynolds stresses at the lock-on and natural shedding states, $\bar{u'u'}\;and \;\bar{u'u'}$ at the lock-on state are concentrated on the shear layer around the cylinder. The $\bar{u'u'}\;at\;f_o/f_n=2.0$ has a large value near the centerline, compared with that of other cases. Considering the traces of maximum of u', in the wake region near the cylinder, wake width at the lock-on state is wider than that at the natural shedding state.

  • PDF

층류유동에서 사각실린더 주위의 와류쉐딩과 공진현상에 관한 수치해석적 연구 (A numerical study of vortex shedding and lock-on behind a square cylinder in a laminar flow)

  • 정영종;조상현;최해천;강신형
    • 대한기계학회논문집B
    • /
    • 제22권5호
    • /
    • pp.573-583
    • /
    • 1998
  • Effects of the oscillating incoming flow on vortex shedding and lock-on behind a square cylinder are investigated using numerical simulations at a Reynolds number of 100. Vortex shedding occurred at low forcing frequencies of the incoming flow similar to the natural vortex shedding. As the forcing frequency further increases, the shedding frequency decreases to the half of the forcing freqnency. For a sufficiently large frequency, vortex shedding returns to the natural vortex shedding irrespective of the forcing amplitude. Also, the lock-on region becomes wider with higher forcing amplitudes. The phase diagram between the drag and lift shows a simple periodic behavior in the lock-on region, while a complicated periodic phase relation is observed when there is no lock-on.

Re=360에서 교란유동장에 놓인 원형실린더 후류의 유동공진 현상에 대한 직접수치해석 (Direct Numerical Simulation of the Lock-on Phenomena in the Wake behind a Circular Cylinder in a Perturbed Flow at Re=360)

  • 박지용;김수현;배중헌;박노마;유정열
    • 대한기계학회논문집B
    • /
    • 제31권9호
    • /
    • pp.780-789
    • /
    • 2007
  • Lock-on phenomenon in the wake of a circular cylinder is investigated at the Reynolds number of 360 using direct numerical simulation (DNS). To induce lock-on, a streamwise velocity perturbation with a frequency of twice the natural shedding frequency is superimposed on the free stream velocity. The Reynolds stress distributions are investigated to analyze the streamwise force balance acting on the recirculation region and the results are compared with the previous experimental result. When the lock-on occurs, the pressure force on the recirculation region is shown to increase mainly due to the reversal of the Reynolds shear stress distribution, which is consistent with our previous results using PIV measurement. It is also shown that, with the lock-on, the strength of the primary vortices increases whereas that of the secondary vortices decreases significantly. Further, under the lock-on condition the wavelength of the secondary vortices increases by as much as 2.5 times.

주기 회전하는 원형주상체 주위 유동장의 수치 시뮬레이션 (Numerical simulation on laminar flow past an oscillating circular cylinder)

  • 문진국;박종천;전호환
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.210-211
    • /
    • 2004
  • The effect of oscillating on the unsteady laminar flow past a circular cylinder is numerically investigated in the present study. Our study is to analyze the vortex formation behind a circular cylinder for different rotary oscillation conditions. And then we are study to portray the unsteady dynamics of wake flows. We decide lock-on region by observing the phase switching phenomena We classify the vortex formation patterns in the primary lock-on region The present study is to identify the quasi-periodic state around lock-on region. At the boundary between lock-on and non-lock-on the shedding frequency is bifurcated. After the bifurcation, one frequency follow the forcing frequency ($S_f$) and the other returns to the natural shedding frequency ($St_0$). In the quasi-periodic state, the variation of magnitudes and relevant phase changes of $C_L$ with forcing phase are examined.

  • PDF

Navier-Stokes 식을 이용한 회전 진동하는 2차원 원형 실린더 주위 유동 해석 (NUMERICAL ANALYSIS OF THE FLOW AROUND A ROTARY OSCILLATING CIRCULAR CYLINDER USING UNSTEADY TWO DIMENSIONAL NAVIER-STOKES EQUATION)

  • 이명국;김재수
    • 한국전산유체공학회지
    • /
    • 제16권3호
    • /
    • pp.8-14
    • /
    • 2011
  • Although the geometry of circular cylinder is simple, the flow is complicate because of the flow separation and vortex shedding. In spite of many numerical and experimental researches, the flow around a circular cylinder has not been clarified even now. It has been known that the unsteady vortex shedding from a circular cylinder can vibrate and damage a structure. Lock-on phenomenon is very important in the flow around an oscillating circular cylinder. The lock-on phenomenon is that when the oscillation frequency of the circular cylinder is at or near the frequency of vortex shedding from a stationary cylinder, the vortex shedding synchronizes with the cylinder motion. This phenomenon can be recognized by the spectral analysis of the lift coefficient history. At the lock-on region the vortex is shedding by the modulated frequency to the body frequency. However, the vortex is shedding by the mixed frequencies of natural shedding and forced body frequency in the region of non-lock-on. In this paper, it was analyzed the relation between the frequency of rotary oscillating circular cylinder and the vortex shedding frequency.

레이저 관성항법장치 초기정렬 성능 분석 (Performance Analysis on the Initial Alignment of Laser Inertial Navigation System)

  • 김현석;김천중;이태규
    • 한국군사과학기술학회지
    • /
    • 제12권5호
    • /
    • pp.622-635
    • /
    • 2009
  • Laser Inertial Navigation System(LINS) consists of Ring Laser Gyroscopes(RLG) and accelerometers. RLG has a lock-in region in which there is zero output for input angular rates less than about 0.1deg/sec. The lock-in region is generated by the imperfect mirrors in RLG. To avoid the lock-in region, a sinusoidal motion called dither motion is applied on RLG. Therefore this dither motion is measured by RLG/accelerometer even if at a stop state. In this situation, the performance on the initial alignment of LINS can be degraded. In this paper, we analyze the performance on the initial alignment of LINS theoretically and experimentally. Analysis results include how dither motion, the pre-filter and the corner frequency in alignment loop affects the performance on the initial alignment of LINS.

진동 유동장에서 유동공진에 의한 실린더 후류의 와류 특성 변화 (Change of Vortex Dynamics in the Cylinder Wake by the Lock-on to Oscillatory Incident Flow)

  • 김원태;성재용;유정열
    • 대한기계학회논문집B
    • /
    • 제27권11호
    • /
    • pp.1645-1654
    • /
    • 2003
  • When vortex shedding is locked-on to a single frequency oscillatory flow, the variations of vortex dynamics are investigated using a time-resolved PIV system. Wake regions of recirculation and vortex formation, dynamic behavior of the shed vortices and the Reynolds stress fields are measured in the wake-transition regime at the Reynolds number 360. In the lock-on state, reduction of the wake region occurs and flow energy distributed downstream moves upstream being concentrated near the cylinder base. To observe the dynamic behavior of the shed vortices, the trajectory of the vortex center extended to the inside of the wake bubble is considered, which describes well the formation and evolution processes. The Reynolds stresses and their contributions to overall force balance on the wake bubble manifest the increase of the drag force by the lock-on.