• Title/Summary/Keyword: Location verification

Search Result 312, Processing Time 0.022 seconds

The Causal Relationship of the Hydrocephalus in Patients with Aneurysmal Subarachnoid Hemorrhage

  • Shin, Tae-Sob;Jung, Chul-Ku;Kim, Hyun-Woo;Park, Keung-Suk;Kim, Jae-Myung
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.3
    • /
    • pp.173-178
    • /
    • 2007
  • Objective : Hydrocephalus is one of the major complications following spontaneous subarachnoid hemorrhage (SAH). However, the risk factors of the hydrocephalus after SAH are not still well known. This study was focused on verification of the causal relationships between the development of hydrocephalus and SAH. Methods : The patients who developed hydrocephalus after rupture of aneurysms were studied. To obtain prognostic factors regarding to hydrocephalus, several parameters such as age, sex, hypertension, location of aneurysm, existence of intraventricular hemorrhage (IVH) and intracerebral hemorrhage (ICH), Glasgow coma scale (GCS), Hunt-Hess SAH classification & Fisher Grade on admission and the ratio of frontal harn of lateral ventricle diameter to skull inner table diameter at this level (FH/ID) were studied retrospectively. Results : The development of hydrocephalus following SAH is multifactorial. The age, IVH, FH/ID ratio were related to hydrocephalus in analysis. There is a low clinical correlation between sex, hypertension, location of aneurysm, existence of ICH, GCS, Hunt-Hess SAH classification, Fisher Grade on admission and hydrocephalus. Conclusion : Knowledge on risk factors related to the occurrence of hydrocephalus may help guide neurosurgeons in the long-term care of patients who have experienced aneurysmal SAH.

APPLICATION OF LIKELIHOOD RATIO MODEL FOR LANDSLIDE SUSCEPTIBILITY MAPPING USING GIS AT LAI CHAU, VIETNAM

  • LEE SARO;DAN NGUYEN TU
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.314-317
    • /
    • 2004
  • The aim of this study was to evaluate the susceptibility from landslides in the Lai Chau region of Vietnam, using Geographic Information System (GIS) and remote sensing data, focusing on the relationship between tectonic fractures and landslides. Landslide locations were identified from an interpretation of aerial photographs and field surveys. Topographic and geological data and satellite images were collected, processed, and constructed into a spatial database using GIS data and image processing techniques, and a scheme of the tectonic fracturing of the crust in the Lai Chau region was established. In this scheme, Lai Chau was identified as a region with low crustal fractures, with the grade of tectonic fracture having a close relationship with landslide occurrence. The factors found to influence landslide occurrence were: topographic slope, topographic aspect, topographic curvature, distance from drainage, lithology, distance from a tectonic fracture and land cover. Landslide prone areas were analyzed and mapped using the landslide occurrence factors employing the probability-likelihood ratio method. The results of the analysis were verified using landslide location data, and these showed a satisfactory agreement between the hazard map and existing landslide location data.

  • PDF

Verification of Two Least-Squares Methods for Estimating Center of Rotation Using Optical Marker Trajectory

  • Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.371-378
    • /
    • 2017
  • An accurate and robust estimation of center of rotation (CoR) using optical marker trajectory is crucial in human biomechanics. In this regard, the performances of the two prevailing least-squares methods, the Gamage and Lasenby (GL) method, and the Chang and Pollard (CP) method, are verified in this paper. While both methods are sphere-fitting approaches in closed form and require no tuning parameters, they have not been thoroughly verified by comparison of their estimation accuracies. Furthermore, while for both methods, results for stationary CoR locations are presented, cases for perturbed CoR locations have not been investigated for any of them. In this paper, the estimation performances of the GL method and CP method are investigated by varying the range of motion (RoM) and noise amount, for both stationary and perturbed CoR locations. The difference in the estimation performance according to the variation in the amount of noise and RoM was clearly shown for both methods. However, the CP method outperformed the GL method, as seen in results from both the simulated and the experimental data. Particularly, when the RoM is small, the GL method failed to estimate the appropriate CoR while the CP method reasonably maintained the accuracy. In addition, the CP method showed a considerably better predictability in CoR estimation for the perturbed CoR location data than the GL method. Accordingly, it may be concluded that the CP method is more suitable than the GL method for CoR estimation when RoM is limited and CoR location is perturbed.

Experimental Verification of Multi-Sensor Geolocation Algorithm using Sequential Kalman Filter (순차적 칼만 필터를 적용한 다중센서 위치추정 알고리즘 실험적 검증)

  • Lee, Seongheon;Kim, Youngjoo;Bang, Hyochoong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.7-13
    • /
    • 2015
  • Unmanned air vehicles (UAVs) are getting popular not only as a private usage for the aerial photograph but military usage for the surveillance, reconnaissance and supply missions. For an UAV to successfully achieve these kind of missions, geolocation (localization) must be implied to track an interested target or fly by reference. In this research, we adopted multi-sensor fusion (MSF) algorithm to increase the accuracy of the geolocation and verified the algorithm using two multicopter UAVs. One UAV is equipped with an optical camera, and another UAV is equipped with an optical camera and a laser range finder. Throughout the experiment, we have obtained measurements about a fixed ground target and estimated the target position by a series of coordinate transformations and sequential Kalman filter. The result showed that the MSF has better performance in estimating target location than the case of using single sensor. Moreover, the experimental result implied that multi-sensor geolocation algorithm is able to have further improvements in localization accuracy and feasibility of other complicated applications such as moving target tracking and multiple target tracking.

Development of Low-Cost Vision-based Eye Tracking Algorithm for Information Augmented Interactive System

  • Park, Seo-Jeon;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.7 no.1
    • /
    • pp.11-16
    • /
    • 2020
  • Deep Learning has become the most important technology in the field of artificial intelligence machine learning, with its high performance overwhelming existing methods in various applications. In this paper, an interactive window service based on object recognition technology is proposed. The main goal is to implement an object recognition technology using this deep learning technology to remove the existing eye tracking technology, which requires users to wear eye tracking devices themselves, and to implement an eye tracking technology that uses only usual cameras to track users' eye. We design an interactive system based on efficient eye detection and pupil tracking method that can verify the user's eye movement. To estimate the view-direction of user's eye, we initialize to make the reference (origin) coordinate. Then the view direction is estimated from the extracted eye pupils from the origin coordinate. Also, we propose a blink detection technique based on the eye apply ratio (EAR). With the extracted view direction and eye action, we provide some augmented information of interest without the existing complex and expensive eye-tracking systems with various service topics and situations. For verification, the user guiding service is implemented as a proto-type model with the school map to inform the location information of the desired location or building.

Verification Techniques of the Distored iBeacon Information for Reliable Indoor Positioning Systems (신뢰성 있는 실내 위치 측위 시스템을 위한 왜곡된 iBeacon 정보의 검증 기법)

  • Yoon, Chang-Pyo;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.345-347
    • /
    • 2016
  • Recently location based services is being expanded into the indoor service that can not access to the outdoor location informations, such as GPS. Thus, the research and development of an indoor positioning system with BLE(Bluetooth Low Energy) iBeacon technology has expanded. However, RSSI (Received Signal Strength Indicator) that is used as the distance information between the terminal and for positioning iBeacon signal has a problem in that distortion occurs, information such as the signal attenuation and the delay due to the characteristics of radio waves. In this paper, we propose a reliable method of verifying iBeacon signal with the signal distortion problems for reliable indoor positioning systems.

  • PDF

A two-stage approach for quantitative damage imaging in metallic plates using Lamb waves

  • Ng, Ching-Tai
    • Earthquakes and Structures
    • /
    • v.8 no.4
    • /
    • pp.821-841
    • /
    • 2015
  • This paper proposes a two-stage imaging approach for quantitative inspection of damages in metallic plates using the fundamental anti-symmetric mode of ($A_0$) Lamb wave. The proposed approach employs a number of transducers to transmit and receive $A_0$ Lamb wave pulses, and hence, to sequentially scan the plate structures before and after the presence of damage. The approach is applied to image the corrosion damages, which are simplified as a reduction of plate thickness in this study. In stage-one of the proposed approach a damage location image is reconstructed by analyzing the cross-correlation of the wavelet coefficient calculated from the excitation pulse and scattered wave signals for each transducer pairs to determine the damage location. In stage-two the Lamb wave diffraction tomography is then used to reconstruct a thickness reduction image for evaluating the size and depth of the damage. Finite element simulations are carried out to provide a comprehensive verification of the proposed imaging approach. A number of numerical case studies considering a circular transducer network with eight transducers are used to identify the damages with different locations, sizes and thicknesses. The results show that the proposed methodology is able to accurately identify the damage locations with inaccuracy of the order of few millimeters of a circular inspection area of $100mm^2$ and provide a reasonable estimation of the size and depth of the damages.

Evaluating Explanatory Power of Solar Intensity as Determining Factor of Housing Density in Intermontane Basin (산간분지에서 주택밀도의 결정인자로서 태양광도의 영향력 평가)

  • Um, Jung-Sup
    • Journal of the Korean association of regional geographers
    • /
    • v.15 no.6
    • /
    • pp.689-706
    • /
    • 2009
  • It is usual to prioritize the spatial variables that influence housing location by a few specialist's experienced knowledge or intuition. Multiple regression techniques were used to evaluate the spatially prioritized relationships between housing density and seasonal solar intensity parameters for a total of 134 house locations. Solar radiation and duration of sunshine on winter solstice was the most important predictor of house density located in intermontane basin. In contrast to the typical theory, elevation, slope and accessibility to road were not a dominant determining factor upon the dependent variable of house density. A clear verification has been made for the hidden assumptions for the arrangement of typical Korean housing in intermontane basin that its approach is found to be more appropriate in avoiding shadow conditions, rather than exploring the ideal landform location.

  • PDF

Damage Location Detection of Shear Building Structures Using Mode Shape (모드형상을 이용한 전단형 건물의 손상 위치 추정)

  • Yoo, Suk Hyeong;Lee, Hong Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.124-132
    • /
    • 2013
  • Damage location and extent could be detected by the inverse analysis on dynamic response of the damaged structure. In general, detection of damage location is possible by the observation of the mode shape difference between undamaged and damaged structure and assessment of stiffness reduction is possible by the observation of the natural frequency difference of them. The study on damage detection by the dynamic response in civil structures is reported enough and in practical use, but in building structures it is reported seldom due to several problems. The purpose of this study is to present the damage detection method on shear building structures by mode shape. The damage location index using 1st mode shape is observed theoretically to find out damage location. The damage detection method is applied to numerical analysis model such as MATLAB and MIDAS GENw for the verification. Finally the shaking table test on 3 story shear building is performed for the examination of the damage detection method. In shaking table results, as the story stiffness decrease by 25% the 1st mode frequency increase by 12%, and the damage location index represents minus at damaged story.

A Study on the Implement of AI-based Integrated Smart Fire Safety (ISFS) System in Public Facility

  • Myung Sik Lee;Pill Sun Seo
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.3
    • /
    • pp.225-234
    • /
    • 2023
  • Even at this point in the era of digital transformation, we are still facing many problems in the safety sector that cannot prevent the occurrence or spread of human casualties. When you are in an unexpected emergency, it is often difficult to respond only with human physical ability. Human casualties continue to occur at construction sites, manufacturing plants, and multi-use facilities used by many people in everyday life. If you encounter a situation where normal judgment is impossible in the event of an emergency at a life site where there are still many safety blind spots, it is difficult to cope with the existing manual guidance method. New variable guidance technology, which combines artificial intelligence and digital twin, can make it possible to prevent casualties by processing large amounts of data needed to derive appropriate countermeasures in real time beyond identifying what safety accidents occurred in unexpected crisis situations. When a simple control method that divides and monitors several CCTVs is digitally converted and combined with artificial intelligence and 3D digital twin control technology, intelligence augmentation (IA) effect can be achieved that strengthens the safety decision-making ability required in real time. With the enforcement of the Serious Disaster Enterprise Punishment Act, the importance of distributing a smart location guidance system that urgently solves the decision-making delay that occurs in safety accidents at various industrial sites and strengthens the real-time decision-making ability of field workers and managers is highlighted. The smart location guidance system that combines artificial intelligence and digital twin consists of AIoT HW equipment, wireless communication NW equipment, and intelligent SW platform. The intelligent SW platform consists of Builder that supports digital twin modeling, Watch that meets real-time control based on synchronization between real objects and digital twin models, and Simulator that supports the development and verification of various safety management scenarios using intelligent agents. The smart location guidance system provides on-site monitoring using IoT equipment, CCTV-linked intelligent image analysis, intelligent operating procedures that support workflow modeling to immediately reflect the needs of the site, situational location guidance, and digital twin virtual fencing access control technology. This paper examines the limitations of traditional fixed passive guidance methods, analyzes global technology development trends to overcome them, identifies the digital transformation properties required to switch to intelligent variable smart location guidance methods, explains the characteristics and components of AI-based public facility smart fire safety integrated system (ISFS).