• Title/Summary/Keyword: Location system

Search Result 7,362, Processing Time 0.039 seconds

Establishment of Crowd Management Safety Measures Based on Crowd Density Risk Simulation (군중 밀집 위험도 시뮬레이션 기반의 인파 관리 안전대책 수립)

  • Hyuncheol Kim;Hyungjun Im;Seunghyun Lee;Youngbeom Ju;Soonjo Kwon
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.2
    • /
    • pp.96-103
    • /
    • 2023
  • Generally, human stampedes and crowd collapses occur when people press against each other, causing falls that may result in death or injury. Particularly, crowd accidents have become increasingly common since the 1990s, with an average of 380 deaths annually. For instance, in Korea, a stampede occurred during the Itaewon Halloween festival on October 29, 2022, when several people crowded onto a narrow, downhill road, which was 45 meters long and between 3.2 and 4 meters wide. Precisely, this stampede was primarily due to the excessive number of people relative to the road size. Essentially, stampedes can occur anywhere and at any time, not just at events, but also in other places where large crowds gather. More specifically, the likelihood of accidents increases when the crowd density exceeds a turbulence threshold of 5-6 /m2. Meanwhile, festivals and events, which have become more frequent and are promoted through social media, garner people from near and far to a specific location. Besides, as cities grow, the number of people gathering in one place increases. While stampedes are rare, their impact is significant, and the uncertainty associated with them is high. Currently, there is no scientific system to analyze the risk of stampedes due to crowd concentration. Consequently, to prevent such accidents, it is essential to prepare for crowd disasters that reflect social changes and regional characteristics. Hence, this study proposes using digital topographic maps and crowd-density risk simulations to develop a 3D model of the region. Specifically, the crowd density simulation allows for an analysis of the density of people walking along specific paths, which enables the prediction of danger areas and the risk of crowding. By using the simulation method in this study, it is anticipated that safety measures can be rationally established for specific situations, such as local festivals, and preparations may be made for crowd accidents in downtown areas.

Positional Accuracy Analysis According to the Exterior Orientation Parameters of a Low-Cost Drone (저가형 드론의 외부표정요소에 따른 위치결정 정확도 분석)

  • Kim, Doo Pyo;Lee, Jae One
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.291-298
    • /
    • 2022
  • Recently developed drones are inexpensive and very convenient to operate. As a result, the production and utilization of spatial information using drones are increasing. However, most drones acquire images with a low-cost global navigation satellite system (GNSS) and an inertial measurement unit (IMU). Accordingly, the accuracy of the initial location and rotation angle elements of the image is low. In addition, because these drones are small and light, they can be greatly affected by wind, making it difficult to maintain a certain overlap, which degrades the positioning accuracy. Therefore, in this study, images are taken at different times in order to analyze the positioning accuracy according to changes in certain exterior orientation parameters. To do this, image processing was performed with Pix4D Mapper and the accuracy of the results was analyzed. In order to analyze the variation of the accuracy according to the exterior orientation parameters in detail, the exterior orientation parameters of the first processing result were used as meta-data for the second processing. Subsequently, the amount of change in the exterior orientation parameters was analyzed by in a strip-by-strip manner. As a result, it was proved that the changes of the Omega and Phi values among the rotation elements were related to a decrease in the height accuracy, while changes in Kappa were linked to the horizontal accuracy.

A Study on the Status of Use and Value of 'Saemi' in Sacheon Alluvial Fan (사천 선상지 '새미'의 이용 실태 및 가치 고찰)

  • Kim, Dohyun;Jeong, Myeong Cheol;Seo, Ki Chun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.24 no.4
    • /
    • pp.85-95
    • /
    • 2022
  • This study is about the story of 'Saemi', existing in the Sacheon Alluvial fan area. Saemi is a local word for Dumbeong, which is the traditional water irrigation facilities in this area that could be formed according to the geographical characteristics of a Alluvial fan site. In the meantime, although Saemi has been an important source of water, related research has been mainly done from an ecological point of view. Accordingly, the researcher paid attention to the functional aspects of Saemi itself, grasped its location, distribution status, and usage including the construction method, and considered its intrinsic value through classification and characteristic analysis of Saemi. As a result of five field surveys from September 2021 to October 2022, 129 Saemies remained in the Sacheon alluvial fan area. According to the structure and shape, Saemi could be divided into basic type, complex type, and buried type. The basic type was subdivided into bucket-type and stairs-type along with the complex type, and the buried type was subdivided into all buried-type and some buried-type. Saemies were mainly distributed at the distal end of the Sacheon alluvial fan site, individual Saemies were built on farmland, and common Saemies were usually built along roadsides adjacent to villages. The reason why the Saemies are concentrated at the distal end is the geographical characteristics of the alluvial fan where the water underflows. Saemi was an important multifunctional water supply source equivalent to the main water source for people at the distal end of the pond who did not receive a stable supply of water from the reservoir. Saemi was at the center of the underground water irrigation network agricultural system in the Sacheon alluvial fan area according to the principles of 'bbaeim(drop out)' and 'gaepim(pooling)' It has provided a foundation for establishing itself as an appropriate technology in this area. Such Saemi contributed to the rural landscape and agricultural biodiversity through its own system and served as a public interest function. It is necessary to know, conserve, manage, and continuously utilize the value of this Saemi as an agricultural heritage.

Elevator Algorithm Design Using Time Table Data (시간표 데이터를 이용한 엘리베이터 알고리즘 설계)

  • Park, Jun-hyuk;Kyoung, Min-jun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.122-124
    • /
    • 2022
  • Handling Passenger Traffic is the main challenge for designing an elevator group-control algorithm. Advanced control systems such as Hyundai's Destination Selection System(DSS) lets passengers select the destination by pressing on a selecting screen, and the systems have shown great efficiency. However, the algorithm cannot be applied to the general elevator control system due to the expensive cost of the technology. Often many elevator systems use Nearest Car(NC) algorithms based on the SCAN algorithm, which results in time efficiency problems. In this paper, we designed an elevator group-control algorithm for specific buildings that have approximate timetable data for most of the passengers in the building. In that way, it is possible to predict the destination and the location of passenger calls. The algorithm consists of two parts; the waiting function and the assignment function. They evaluate elevators' actions with respect to the calls and the overall situation. 10 different timetables are created in reference to a real timetable following midday traffic and interfloor traffic. The specific coefficients in the function are set by going through the genetic algorithm process that represents the best algorithm. As result, the average waiting time has shortened by a noticeable amount and the efficiency was close to the known DSS result. Finally, we analyzed the algorithm by evaluating the meaning of each coefficient result from the genetic algorithm.

  • PDF

Experimental Study of Wireless Communication System by Surface wave Communication through Confined Spaces on Vessels (선박 밀폐 공간 무선통신 구현을 위한 표면파 통신의 선박 활용 연구)

  • Jin-Woo Kong;Suk-Gun Song;Hak-Sun Kim;Bu-Young Kim;Woo-Seong Shim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2021.11a
    • /
    • pp.127-128
    • /
    • 2021
  • This study suggests surface wave communication, which uses a metal surface as a medium, to provide wireless communication in the extreme environment due to surrounding metal materials on vessels. The test was conducted on a G/T 265 tons tug boat, and to confirm the possibility of surface wave communication between a bridge and each designated space in the boat. As a result, the transmission speed was 13Mbps in average. For the test case between the bridge and the engine room, transmission speed was 4.3Mbps while the engine was on, and 1.2Mbps during sailing. It was able to be overcome by partially changing the equipment installation location. Surface wave communication in a bow storage, a fully enclosed space, had 8Mbps better transmission speed than wireless communication; this confirmed the superiority of surface wave communication in confined spaces on a vessel. Additional surface wave generators were designed and applied to resolve the paint issue. It is expected to apply surface wave communication to implement the new wireless solution on vessels.

  • PDF

LAN Based MFD Interface for Integrated Operation of Radio Facilities using Fishery Vessel (어선용 무선설비의 통합운용을 위한 LAN 기반 MFD 인터페이스)

  • In-ung Ju;In-suk Kang;Jeong-yeon Kim;Seong-Real Lee;Jo-cheon Choi
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.496-503
    • /
    • 2022
  • In the reality that the fishing population is decreasing and the single-man fishing vessels is increasing, mandatory equipment for navigation and radio equipments for the safety of fishing boats has continued to be added. Therefore, many equipment such as navigation, communication and fishing are installed in the narrow steering room, so it is very confusing and a number of monitors are placed in the front, which is a factor that degrades the function of maritime observation. To solve this problem, we studied an interface that integrates and operates to major radio facilities such as very high frequency-digital selective calling equipment (VHF-DSC), automatic identification system (AIS) and fishing boat location transmission device (V-pass) into one multi function display (MFD) based on LAN. In addition, IEC61162-450 UDP packets and IEC61162 sentence were applied to exchange data through link between MFD and radio equipments, and additional messages needed for each equipment and function were defined. The integrated MFD monitor is easily operated by the menu method, and the performance of the interface was evaluated by checking the distress and emergency communication functions related to maritime safety and the message transmission status by equipment.

Analysis of Behavior due to Tendon Damage for Maintenance of PSC I Girder Bridge (PSC I 거더교 유지관리를 위한 긴장재 손상에 따른 거동 분석)

  • Jongho Park;Jinwoong Choi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.53-60
    • /
    • 2024
  • Prestressed concrete (PSC) bridges are vulnerable to corrosion and fracture of tendons, and in particular, structures using the internal post-tensioned with grouted system have difficulties in maintenance due to limitations of inspection. In this study, the actual behavior of PSC I girder bridge was analyzed according to tendon damage. The target PSC I girder bridge, an decommissioned highway bridge of upper and lower bridges, had the service period of 33 years and 20 years, respectively. Deflection and concrete strain were measured according to the location of damaged tendon and loading method. Regardless of the age of the bridge, its structural performance decreased when the damaged tendon was closer to the center of the girder. The change in behavior increased as the truck load approached to the girder where the tendon cut. If the load was applied to the adjacent girder where the tendon was cut, the structural performance was likely to be maintained due to the influence of the entire structural system. The change in deflection was difficult to observe visually, while the concrete strain exceeded the cracking strain. Therefore, it is recommended that future monitoring and inspection of PSC I girder bridges should focus on concrete strain or cracking.

Preoperative Assessment of Renal Sinus Invasion by Renal Cell Carcinoma according to Tumor Complexity and Imaging Features in Patients Undergoing Radical Nephrectomy

  • Ji Hoon Kim;Kye Jin Park;Mi-Hyun Kim;Jeong Kon Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.8
    • /
    • pp.1323-1331
    • /
    • 2021
  • Objective: To identify the association between renal tumor complexity and pathologic renal sinus invasion (RSI) and evaluate the usefulness of computed tomography tumor features for predicting RSI in patients with renal cell carcinoma (RCC). Materials and Methods: This retrospective study included 276 consecutive patients who underwent radical nephrectomy for RCC with a size of ≤ 7 cm between January 2014 and October 2017. Tumor complexity and anatomical renal sinus involvement were evaluated using two standardized scoring systems: the radius (R), exophytic or endophytic (E), nearness to collecting system or sinus (N), anterior or posterior (A), and location relative to polar lines (RENAL) nephrometry and preoperative aspects and dimensions used for anatomical classification (PADUA) system. CT-based tumor features, including shape, enhancement pattern, margin at the interface of the renal sinus (smooth vs. non-smooth), and finger-like projection of the mass, were also assessed by two independent radiologists. Univariable and multivariable logistic regression analyses were performed to identify significant predictors of RSI. The positive predictive value, negative predictive value (NPV), accuracy of anatomical renal sinus involvement, and tumor features were evaluated. Results: Eighty-one of 276 patients (29.3%) demonstrated RSI. Among highly complex tumors (RENAL or PADUA score ≥ 10), the frequencies of RSI were 42.4% (39/92) and 38.0% (71/187) using RENAL and PADUA scores, respectively. Multivariable analysis showed that a non-smooth margin and the presence of a finger-like projection were significant predictors of RSI. Anatomical renal sinus involvement showed high NPVs (91.7% and 95.2%) but low accuracy (40.2% and 43.1%) for RSI, whereas the presence of a non-smooth margin or finger-like projection demonstrated comparably high NPVs (90.0% and 91.3% for both readers) and improved accuracy (67.0% and 73.9%, respectively). Conclusion: A non-smooth margin or the presence of a finger-like projection can be used as a preoperative CT-based tumor feature for predicting RSI in patients with RCC.

Design a Four Layer Depth-Encoding Detector Using Quasi-Block Scintillator for High Resolution and Sensitivity (고분해능 및 고민감도를 위한 준 블록 섬광체를 사용한 네 층의 반응 깊이 측정 검출기 설계)

  • Seung-Jae Lee;Byungdu Jo
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.2
    • /
    • pp.65-71
    • /
    • 2024
  • To achieve high resolution and sensitivity of positron emission tomography (PET) for small animals, the detector is constructed using very thin and long scintillation pixels. Due to the structure of these scintillation pixels, spatial resolution deterioration occurs outside the system's field of view. To solve this problem, we designed a detector that could improve spatial resolution by measuring the interaction depth and improve sensitivity by using a quasi-block scintillator. A quasi-block scintillator size of 12.6 mm x 12.6 mm x 3 mm was arranged in four layers, and optical sensors were placed on all sides to collect light generated by the interaction between gamma rays and the scintillator. DETECT2000 simulation was performed to evaluate the performance of the designed detector. Flood images were acquired by generating gamma-ray events at 1 mm intervals from 1.3 mm to 11.3 mm within the scintillator of each layer. The spatial resolution and peak-to-peak distance for each location were measured in an 11 x 11 array of flood images. The average measured spatial resolution was 0.25 mm, and the average distance between peaks was 1.0 mm. Through this, it was confirmed that all locations were separated from each other. In addition, because the light signals of all layers were measured separately from each other, the layer of the scintillator that interacted with the gamma rays could be completely separated. When the designed detector is used as a detector in a PET system for small animals, it is considered that excellent spatial resolution and sensitivity can be achieved and image quality can be improved.

Experimental Study on Ventilation Efficiency of Leakage Gas Based on Supply and Exhaust Vent Location (밀폐공간에서 급·배기구 위치에 따른 누출 가스의 환기효과에 관한 실험적 연구)

  • Ha-Young Kim;Seong-Min Lee;Byeol Kim;Kwang-Il Hwang
    • Journal of Navigation and Port Research
    • /
    • v.48 no.4
    • /
    • pp.274-283
    • /
    • 2024
  • Climate change is currently one of the most pressing environmental issues, primarily caused by carbon emissions from fossil fuel usage. As a result, alternative fuels that effectively reduce carbon emissions are garnering more attention. Among these alternatives, hydrogen has numerous advantages, such as its ability for large-scale storage and transport. However, it is crucial to prioritize safety measures, particularly in facilities that handle hydrogen, due to its highly flammable and fast-spreading nature. This study aims to compare and analyze the placement of supply and exhaust vents to efficiently release hydrogen in the event of a leak in an enclosed space. The experiments involved six different scenarios, each with various combinations of supply and exhaust vents. To ensure the experimental process's safety, helium, which shares similar physical properties with hydrogen, was used to analyze the internal oxygen concentration during ventilation system operations. The results revealed that among the six scenarios, Case 2, which employed a lower side supply vent and an upper side exhaust vent, exhibited the shortest ventilation time of 4 minutes and 30 seconds. Additionally, the decrease rate in oxygen concentration was examined in the upper, middle, and lower areas. Ventilation utilizing an upper surface supply vent and two exhaust vents on the upper surface and upper side (Case 6), showed lower oxygen concentration values in the upper area, while Case 2 yielded lower values in the middle and lower areas. Therefore, it is crucial to select an appropriate supply and exhaust vent configuration considering the space's characteristics and usage environment.