• Title/Summary/Keyword: Location coefficient

Search Result 489, Processing Time 0.022 seconds

Dehumidifying Performance of Material-Saving Fin in Fin-tube Heat Exchanger (흰-관 열교환기에서 재료절감 흰의 제습특성)

  • 강희찬;김무환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.730-738
    • /
    • 2001
  • This work discusses the pressure droop, heat and mass transfer of the finned-tube heat exchangers having 7 mm tubes and offset strips in dehumidifying applications. It focuses on the fin material saving and the reduction of pressure drop. The experiment was conducted using three times scaled-up models to simulate the performance of the prototype. Eight kinds of fins having different strips and S shape edges were tested. the area density of the strip was a major factor and its shape and the location were secondary factors on the pressure drop, the heat and mass transfer. The reduced-area fin can almost equal the non-reduced fin in the aspect of heat and mass transfer. The strip fins proposed in the present work can considerably reduce both the pressure drop and the fin material for similar thermal load.

  • PDF

Three-dimensional limit analysis of seismic stability of tunnel faces with quasi-static method

  • Zhang, B.;Wang, X.;Zhang, J.S.;Meng, F.
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.301-318
    • /
    • 2017
  • Based on the existing research results, a three-dimensional failure mechanism of tunnel face was constructed. The dynamic seismic effect was taken into account on the basis of quasi-static method, and the nonlinear Mohr-Coulomb failure criterion was introduced into the limit analysis by using the tangent technique. The collapse pressure along with the failure scope of tunnel face was obtained through nonlinear limit analysis. Results show that nonlinear coefficient and initial cohesion have a significant impact on the collapse pressure and failure zone. However, horizontal seismic coefficient and vertical seismic proportional coefficient merely affect the collapse pressure and the location of failure surface. And their influences on the volume and height of failure mechanism are not obvious. By virtue of reliability theory, the influences of horizontal and vertical seismic forces on supporting pressure were discussed. Meanwhile, safety factors and supporting pressures with respect to 3 different safety levels are also obtained, which may provide references to seismic design of tunnels.

Symmetry Detection Through Hybrid Use Of Location And Direction Of Edges

  • Koo, Ja Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.4
    • /
    • pp.9-15
    • /
    • 2016
  • Symmetry is everywhere in the world around us from galaxy to microbes. From ancient times symmetry is considered to be a reflection of the harmony of universe. Symmetry is not only a significant clue for human cognitive process, but also useful information for computer vision such as image understanding system. Application areas include face detection and recognition, indexing of image database, image segmentation and detection, analysis of medical images, and so on. The technique used in this paper extracts edges, and the perpendicular bisector of any two edge points is considered to be a candidate axis of symmetry. The coefficients of candidate axis are accumulated in the coefficient space. Then the axis of symmetry is determined to be the line for which the coefficient histogram has maximum value. In this paper, an improved method is proposed that utilizes the directional information of edges, which is a byproduct of the edge detection process. Experiment on 20 test images shows that the proposed method performs 22.7 times faster than the original method. In another test on 5 images with 4% salt-and-pepper noise, the proposed method detects the symmetry successfully, while the original method fails. This result reveals that the proposed method enhances the speed and accuracy of detection process at the same time.

A Study on the Absorption of Thermal Stress on the Underground piping for the District heating (지역난방용 매설배관의 열응력 흡수에 관한 연구)

  • Kong Jae Hyang;Sin Byung Kug
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.81-88
    • /
    • 2005
  • There have been many studies on generation equipment and plant piping, but there is no significant study result on the heat transportation pipe. As such, this study established basic theory on the compensated method among buried pipe for regional heating, and further obtained the following results by applying the conditions of AGFW and NCHPP respectively in calculation of friction and maximum installation distance for the buried pipe. Friction coefficient according to the types and physical properties of soil, friction and maximum installation distance were compared to set the application value of friction coefficient according to the location of works. Calculation formula of clay load to be applied for calculation of friction was introduced to the formula of AGFW and the formula of NCHPP that has been used in Nowon district since 1997 to determine the difference and applicability. $120^{\circ}C$ and $95^{\circ}C$ were applied in temperature difference for expansion volume to compare the arm length at the curve pipe so thai it can be reflected in the design in the future. Maximum installation distance according to thickness of pipe was compared to present the necessity of unified specification so that same kinds of pipe materials can be used for same kinds of works.

Design of Bandpass Filter with a Single Dual-Mode Resonator (하나의 이중 모드 공진기를 이용한 대역 통과 필터 설계)

  • An, Jae-Min;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.12
    • /
    • pp.1432-1437
    • /
    • 2010
  • This paper proposes a new design method of bandpass filter with single dual-mode resonator. In the proposed method, a coupling coefficient between two resonators was obtained by considering a dual-mode resonator as two single resonators. Based on the obtained coupling coefficient, two resonant frequencies of dual-mode resonator were calculated and then arranged according to a transmission zero's location of required filter. To verify the proposed theory, two WLAN bandpass filters which have a transmission zero to a lower and an upper stopband repectively were designed and implemented.

Computational Flow Analysis and Drag Coefficient Research for Angle of Attack in Slocum Underwater Glider (Slocum 수중 글라이더의 유영 받음각에 대한 전산유동해석 및 항력계수 연구)

  • Park, Jeong-Woo;Lee, Jung-Woo;Choi, Young-Ho;Seo, Kap-Ho;Suh, Jin-Ho;Park, Jong-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.381-388
    • /
    • 2016
  • An underwater glider makes it easy to explore a wide area with low power. However, an underwater glider is difficult to use for rapid collection, because the surfacing location cannot be predicted after a dive. Thus, simulation research is needed to predict the swimming path. In this paper, based on research, a linearized equation is derived for the drag coefficient at each angle of attack by assuming the boundary conditions for the Slocum underwater glider and performing a computational flow analysis.

Finite Element Analysis of Subsurface Crack Propagation in Half-space Due to Sliding Contact (유한요소법을 이용한 미끄럼 접촉시의 반무한체 내의 수평균열 전파해석)

  • 이상윤;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.297-302
    • /
    • 1999
  • Finite element analysis is peformed about the crack propagation in half-space due to sliding contact. The analysis is based on linear elastic fracture mechanics and stress intensity factor concept. The crack location is fixed and the friction coefficient between asperity and half-space is varied to analyze the effect of surface friction on stress Intensity factor for horizontal crack. The crack propagation direction is predicted based on the maximum range of shear and tensile stress intensity factor.

  • PDF

Measurement Tests of Friction Coefficient of Precast Concrete Used in Haber Construction (항만용 Precast Concrete 구조물의 마찰계수 측정 실험)

  • Kim, Myung-Sik;Baek, Dong-Il;Kim, Kang-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.73-76
    • /
    • 2006
  • The shape and dimension of precast concrete structure used in habor construction(caisson, block, etc.) are considered productive facility abilities, demanded minimum dimension in work of each member, the relation between the depth of water and a location of leaving, work conditions of towing and leaving, after leaving, differential settlement, etc. As this study examined friction resistance effect of financially designed precast concrete structure formed convex in bottom and stone mound.

  • PDF

Heat Transfer Characteristics in the Evaporator of a Soft Ice Cream Maker (소프트 아이스크림 제조기 증발기의 전열 특성)

  • Byun, Ho-Won;Lee, Jin-Wook;Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1466-1473
    • /
    • 2012
  • Soft icecream is made by scraping an ice formed on the inside of the cylindrical evaporator, where R-404A is evaporating in the annulus. The heat transfer characteristics of the refrigerant evaporation and those during icecream formation were experimentally investigated. Results show that the refrigerant-side heat transfer coefficients are highly dependent on the location in the evaporator due to the complex annulus configuration. The heat transfer coefficient at the inlet is generally lower than those of other locations. The average heat transfer coefficient increases as heat flux increases or saturation temperature decreases. A correlation is developed to predict the refrigerant-side heat transfer coefficient. The icecream-side heat transfer coefficient oscillates continuously due to the periodic removal of ice formed on the surface. The average heat transfer coefficient during icecream formation is approximately 280 W/$m^2K$, and that during single-phase cooling increased from 150 W/$m^2K$ to 250 W/$m^2K$.

Sensitivity Analyses of Influencing Factors on Stability in Soil Cut Slope (토사 절토사면 안정성 영향인자의 민감도 분석)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jun, Sang-Hyun;Cho, Han-Ki
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.73-81
    • /
    • 2006
  • A sensitivity analysis about effects of influencing factors on the stability of Soil cut slope was performed. Slope stability analyses were carried out under dry, rainy and seismic conditions. Dominant factors controlling the slope stability were chosen such as cohesion and internal friction angle, unit weight of soil, water table and seismic horizontal coefficient used for the slope stability during earthquake. Parametric stability analysis with those factors was performed for sensitivity analysis. As results of analyzing the sensitivity of factors under dry and rainy conditions, effects of cohesion, internal friction angle and unit weight of soil on the stability of slope are more critical in the dry condition than in the rainy condition. Cohesion and internal friction angle are more dominant factors influencing the slope stability irrespective of dry or rainy conditions than unit weight of soil and the horizontal seismic coefficient. The unit weight and the horizontal seismic coefficient affects crucially the stability according to conditions of slope formation and dry or rainy seasons. For the effect of horizontal seismic coefficient on stability of slope, safety factor of slope is not affected significantly by dry or rainy conditions. However, increase of the horizontal seismic coefficient under the rainy condition floes reduce the safety factor significantly rather than the dry condition. Therefore, it is needed that the location of the water table is assigned appropriately to satisfy the required safety factor of stability in the case of checking slope stability for the rainy and seismic conditions.

  • PDF