PARK, JUNG-IM;KIM, JAE HOON;SONG, HWI-JUNE;KIM, GU YEON
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
/
v.25
no.4
/
pp.106-116
/
2020
To examine distribution of the Zostera species growing naturally in Ulleungdo, scuba diving surveys using ships were conducted along the coast and inside the harbors of the island at the end of September 2019. In areas of seagrass occurrence, environmental factors such as nutrient concentrations in water column and sediment pore water, salinity, and sediment organic content were also analyzed. Zostera caulescens meadows appeared in the relatively deep waters (14-24 m MSL) of Cheonbu-ri, Jeodong-ri, Sadong-ri, and Namyang-ri in Ulleungdo, and the total seagrass coverage was approximately 4.9 ha. Approximately 0.9 ha of Zostera marina meadow was found at the depths of 3-5 m MSL within Hyeonpo-hang in Hyeonpo-ri. The average shoot density and biomass of Z. caulescens were 121.9±9.7 shoot m-2 and 99.0±13.2 gDW m-2, respectively, with no significant differences by location. The average shoot density and biomass of Z. marina were 193.8±18.8 shoot m-2 and 102.6±6.8 gDW m-2, respectively. The nutrient concentrations in the sediment pore water and sediment organic content in the seagrass meadows in Ulleungdo were lower than those in eelgrass meadows on the southern and eastern coasts of Korea. These results will provide useful basic information for the marine protected species, Z. caulescens and Z. marina, and for the conservation of the waters of Ulleungdo, which has been designated as a marine protected area.
The Journal of the Convergence on Culture Technology
/
v.9
no.4
/
pp.95-103
/
2023
This paper proposes an artificial intelligence convergence education program for teaching the main concept and principle of Support Vector Machines(SVM) at elementary schools. The developed program, based on Jeju's natural environment theme, explains the decision boundary and margin of SVM by vertical and parallel from 4th grade mathematics curriculum. As a result of applying the developed program to 3rd and 5th graders, most students intuitively inferred the location of the decision boundary. The overall performance accuracy and rate of reasonable inference of 5th graders were higher. However, in the self-evaluation of understanding, the average value was higher in the 3rd grade, contrary to the actual understanding. This was due to the fact that junior learners had a greater tendency to feel satisfaction and achievement. On the other hand, senior learners presented more meaningful post-class questions based on their motivation for further exploration. We would like to find effective ways for artificial intelligence convergence education for elementary school students.
This study implemented intelligent compaction technology at the construction site of the AY Highway in Gyeonggi Province, with a focus on obtaining the representative intelligent compaction value, CMV. The target CMV for quality control was established through trial construction, and the validation of the compaction quality control process based on intelligent compaction was conducted. The optimal approach for determining the target CMV was confirmed to be through linear regression of the average CMV measured within a 5-m radius from the plate load testing location. Upon assessing compaction quality against the target CMV, it was observed that the quality criteria outlined in the domestic intelligent compaction standard were met. However, the criteria outlined in Austria and the United States were not satisfied. Notably, indicators related to the variability of compaction quality did not meet the specified criteria, suggesting a stringent standard compared to the observed variability of CMV, ranging from 17% to 55%. Consequently, it is recommended to conduct additional field tests to further validate the compaction quality control process based on intelligent compaction. This will aid in confirming and enhancing the appropriateness of the regulations stipulated in each standard.
Journal of the Korean Society of Marine Environment & Safety
/
v.29
no.7
/
pp.713-723
/
2023
Climate change is significantly affecting coastal areas, and its impacts are expected to intensify. Recent studies on climate change adaptation and risk assessment in coastal regions increasingly integrate the concepts of recovery resilience and vulnerability. The aim of this study is to develop a measurement model for coastal hazard recovery resilience in the context of climate change adaptation. Before constructing the measurement model, a comprehensive literature review was conducted on coastal hazard recovery resilience, establishing a conceptual framework that included operational definitions for vulnerability and recovery resilience, along with several feedback mechanisms. The measurement model for coastal hazard recovery resilience comprised four metrics (MRV, LRV, RTSPV, and ND) and a Coastal Resilience Index (CRI). The developed indices were applied to domestic coastal erosion cases, and regional analyses were performed based on the index grades. The results revealed that the four recovery resilience metrics provided insights into the diverse characteristics of coastal erosion recovery resilience at each location. Mapping the composite indices of coastal resilience indicated that the areas along the East Sea exhibited relatively lower coastal erosion recovery resilience than the West and South Sea regions. The developed recovery resilience measurement model can serve as a tool for discussions on post-adaptation strategies and is applicable for determining policy priorities among different vulnerable regional groups.
Kim, Min-Ji;Jang, Rae-ik;Yoo, Young-jae;Lee, Jun-Won;Song, Eui-Geun;Oh, Hong-Shik;Sung, Hyun-Chan;Kim, Do-kyung;Jeon, Seong-Woo
Journal of the Korean Society of Environmental Restoration Technology
/
v.26
no.5
/
pp.19-32
/
2023
The fragmentation of habitats resulting from human activities leads to the isolation of wildlife and it also causes wildlife-vehicle collisions (i.e. Road-kill). In that sense, it is important to predict potential habitats of specific wildlife that causes wildlife-vehicle collisions by considering geographic, environmental and transportation variables. Road-kill, especially by large mammals, threatens human safety as well as financial losses. Therefore, we conducted this study on roe deer (Capreolus pygargus tianschanicus), a large mammal that causes frequently Road-kill in Jeju Island. So, to predict potential wildlife habitats by considering geographic, environmental, and transportation variables for a specific species this study was conducted to identify high-priority restoration sites with both characteristics of potential habitats and road-kill hotspot. we identified high-priority restoration sites that is likely to be potential habitats, and also identified the known location of a Road-kill records. For this purpose, first, we defined the environmental variables and collect the occurrence records of roe deer. After that, the potential habitat map was generated by using Random Forest model. Second, to analyze roadkill hotspots, a kernel density estimation was used to generate a hotspot map. Third, to define high-priority restoration sites, each map was normalized and overlaid. As a result, three northern regions roads and two southern regions roads of Jeju Island were defined as high-priority restoration sites. Regarding Random Forest modeling, in the case of environmental variables, The importace was found to be a lot in the order of distance from the Oreum, elevation, distance from forest edge(outside) and distance from waterbody. The AUC(Area under the curve) value, which means discrimination capacity, was found to be 0.973 and support the statistical accuracy of prediction result. As a result of predicting the habitat of C. pygargus, it was found to be mainly distributed in forests, agricultural lands, and grasslands, indicating that it supported the results of previous studies.
Hyeji Kim;Hyeok Kang;Seongbong Lee;Hyeongseok Kim;Dongjin Lee
Journal of Advanced Navigation Technology
/
v.26
no.6
/
pp.427-433
/
2022
Obstacle detection, collision recognition, and avoidance technologies are required the collision avoidance technology for UAVs. In this paper, considering collinear multiple static obstacle, we propose an obstacle detection algorithm using LiDAR and a collision recognition and avoidance algorithm based on CPA. Preprocessing is performed to remove the ground from the LiDAR measurement data before obstacle detection. And we detect and classify obstacles in the preprocessed data using the K-means clustering algorithm. Also, we estimate the absolute positions of detected obstacles using relative navigation and correct the estimated positions using a low-pass filter. For collision avoidance with the detected multiple static obstacle, we use a collision recognition and avoidance algorithm based on CPA. Information of obstacles to be avoided is updated using distance between each obstacle, and collision recognition and avoidance are performed through the updated obstacles information. Finally, through obstacle location estimation, collision recognition, and collision avoidance result analysis in the Gazebo simulation environment, we verified that collision avoidance is performed successfully.
This paper presents a new approach for the automatic mapping of discontinuities in a tunnel face based on its 3D digital model reconstructed by LiDAR scan or photogrammetry techniques. The main idea revolves around the identification of discontinuity areas in the 3D digital model of a tunnel face by segmenting its 2D projected images using a deep-learning semantic segmentation model called U-Net. The proposed deep learning model integrates various features including the projected RGB image, depth map image, and local surface properties-based images i.e., normal vector and curvature images to effectively segment areas of discontinuity in the images. Subsequently, the segmentation results are projected back onto the 3D model using depth maps and projection matrices to obtain an accurate representation of the location and extent of discontinuities within the 3D space. The performance of the segmentation model is evaluated by comparing the segmented results with their corresponding ground truths, which demonstrates the high accuracy of segmentation results with the intersection-over-union metric of approximately 0.8. Despite still being limited in training data, this method exhibits promising potential to address the limitations of conventional approaches, which only rely on normal vectors and unsupervised machine learning algorithms for grouping points in the 3D model into distinct sets of discontinuities.
Journal of the Korea institute for structural maintenance and inspection
/
v.27
no.5
/
pp.113-119
/
2023
Most infrastructure structures were completed during periods of economic growth. The number of infrastructure structures reaching their lifespan is increasing, and the proportion of old structures is gradually increasing. The functions and performance of these structures at the time of design may deteriorate and may even lead to safety accidents. To prevent this repercussion, accurate inspection and appropriate repair are requisite. To this end, demand is increasing for computer vision and deep learning technology to accurately detect even minute cracks. However, deep learning algorithms require a large number of training data. In particular, label images indicating the location of cracks in the image are required. To secure a large number of those label images, a lot of labor and time are consumed. To reduce these costs as well as increase detection accuracy, this study proposed a learning structure based on mean teacher method. This learning structure was trained on a dataset of 900 labeled image dataset and 3000 unlabeled image dataset. The crack detection network model was evaluated on over 300 labeled image dataset, and the detection accuracy recorded a mean intersection over union of 89.23% and an F1 score of 89.12%. Through this experiment, it was confirmed that detection performance was improved compared to supervised learning. It is expected that this proposed method will be used in the future to reduce the cost required to secure label images.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.17
no.1
/
pp.17-24
/
2024
In this paper, we propose a highly secure technique to hide confidential data in image pixels using a quadruple encryption techniques. In the proposed technique, the boundary surface where the image outline exists and the flat surface with little change in pixel values are investigated. At the boundary of the image, in order to preserve the characteristics of the boundary, one bit of confidential data that has been multiply encrypted is spatially encrypted again in the LSB of the pixel located at the boundary to hide the confidential data. At the boundary of an image, in order to preserve the characteristics of the boundary, one bit of confidential data that is multiplely encrypted is hidden in the LSB of the pixel located at the boundary by spatially encrypting it. In pixels that are not on the border of the image but on a flat surface with little change in pixel value, 2-bit confidential data that is multiply encrypted is hidden in the lower 2 bits of the pixel using location-based encryption and spatial encryption techniques. When applying the proposed technique to hide confidential data, the image quality of the stego-image is up to 49.64dB, and the amount of confidential data hidden increases by up to 92.2% compared to the existing LSB method. Without an encryption key, the encrypted confidential data hidden in the stego-image cannot be extracted, and even if extracted, it cannot be decrypted, so the security of the confidential data hidden in the stego-image is maintained very strongly. The proposed technique can be effectively used to hide copyright information in general commercial images such as webtoons that do not require the use of reversible data hiding techniques.
Journal of the Korean Society of Environmental Restoration Technology
/
v.27
no.1
/
pp.31-44
/
2024
The coastal dune ecosystem is one of the ecosystems under the most development pressure in Korea. Therefore, it is necessary to study the ecological location and related ecological phenomena of coastal dune plants, but related studies are lacking. Through this study, we intend to conduct research on the structure and restoration of dune plants, focusing on the coastal dunes in Jeju Island, which are affected by artificial development pressure and the continuous increase in tourists among many coastal dunes in Korea. Ecosystems of coastal sand dunes for vegetation survey in Jeju Island are selected based on naturalness and preservation. In this study, 23 major coastal dunes on Jeju Island including Udo were selected. In the coastal dunes of Jeju Island, a whole species survey and quadrat survey were carried out. The vegetation survey at study sites were conducted on May to September 2022, when the vegetation is clearly visible. At the survey site, the dune area was identified at the beginning and the plant species were recorded until no more new species appeared. Vegetation survey in the field was performed by 103 quadrat establishments and was conducted using Braun-Blanquet method. A total of 277 species appeared, and the most common species were Vitex rotundifolia and Calystegia soldanella. The frequency of both Vitex rotundifolia and Calystegia soldanella was approximately over 90%. The proportion of woody and herbaceous in all emerging species was 7.2% and 92.8%, respectively. The total number of species found in the quadrat survey was 98. As a result of classifying plant communities based on species dominance in the quadrats, it was analyzed into 30 plant communities. The plant communities that appeared with a frequency of 2 or more on the main island of Jeju were Vitex rotundifolia, Imperata cylindrica var. koenigii, Ischaemum antephoroides, Wedelia prostrata, Elymus mollis, Calystegia soldanella, Artemisia scoparia, and Tetragonia tetragonoides. The DCCA(detrended canonical correspondence analysis) based on the vegetation and environment factor matrix showed that the height and covers of the dominant plant species explain significantly the variation and distribution of coastal sand dune species on Jeju island. Thus, we may propose a plan to restore the coastal dunes of Jeju island as helping colonization and establishment of mainly sand dune native perennials and trees, preserving native plant communities that are declining and preserving present tree strips of Pinus thunbergii, Litsea japonica, Pittosporum tobira and Vitex rotundifolia.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.