• 제목/요약/키워드: Location Error

Search Result 1,239, Processing Time 0.03 seconds

Elevation Correction of Multi-Temporal Digital Elevation Model based on Unmanned Aerial Vehicle Images over Agricultural Area (농경지 지역 무인항공기 영상 기반 시계열 수치표고모델 표고 보정)

  • Kim, Taeheon;Park, Jueon;Yun, Yerin;Lee, Won Hee;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.223-235
    • /
    • 2020
  • In this study, we propose an approach for calibrating the elevation of a DEM (Digital Elevation Model), one of the key data in realizing unmanned aerial vehicle image-based precision agriculture. First of all, radiometric correction is performed on the orthophoto, and then ExG (Excess Green) is generated. The non-vegetation area is extracted based on the threshold value estimated by applying the Otsu method to ExG. Subsequently, the elevation of the DEM corresponding to the location of the non-vegetation area is extracted as EIFs (Elevation Invariant Features), which is data for elevation correction. The normalized Z-score is estimated based on the difference between the extracted EIFs to eliminate the outliers. Then, by constructing a linear regression model and correcting the elevation of the DEM, high-quality DEM is produced without GCPs (Ground Control Points). To verify the proposed method using a total of 10 DEMs, the maximum/minimum value, average/standard deviation before and after elevation correction were compared and analyzed. In addition, as a result of estimating the RMSE (Root Mean Square Error) by selecting the checkpoints, an average RMSE was derivsed as 0.35m. Comprehensively, it was confirmed that a high-quality DEM could be produced without GCPs.

Development of a Model for Calculating the Construction Duration of Urban Residential Housing Based on Multiple Regression Analysis (다중 회귀분석 기반 도시형 생활주택의 공사기간 산정 모델 개발)

  • Kim, Jun-Sang;Kim, Young Suk
    • Land and Housing Review
    • /
    • v.12 no.4
    • /
    • pp.93-101
    • /
    • 2021
  • As the number of small households (1 to 2 persons per household) in Korea gradually increases, so does the importance of housing supply policies for small households. In response to the increase in small households, the government has been continuously supplying urban housing for these households. Since housing for small households is a sales and rental business similar to apartments and general business facilities, it is important for the building owner to calculate the project's estimated construction duration during the planning stage. Review of literature found a model for estimating the duration of construction of large-scale buildings but not for small-scale buildings such as urban housing for small households. Therefore this study aimed to develop and verify a model for estimating construction duration for urban housing at the planning stage based on multiple regression analysis. Independent variables inputted into the estimation model were building site area, building gross floor area, number of below ground floors, number of above ground floors, number of buildings, and location. The modified coefficient of determination (Ra2) of the model was 0.547. The developed model resulted in a Root Mean Square Error (RMSE) of 171.26 days and a Mean Absolute Percentage Error (MAPE) of 26.53%. The developed estimation model is expected to provide reliable construction duration calculations for small-scale urban residential buildings during the planning stage of a project.

Feasibility Study on Integration of SSR Correction into Network RTK to Provide More Robust Service

  • Lim, Cheol-Soon;Park, Byungwoon;Kim, Dong-Uk;Kee, Chang-Don;Park, Kwan-Dong;Seo, Seungwoo;So, Hyoungmin;Park, Junpyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.4
    • /
    • pp.295-305
    • /
    • 2018
  • Network RTK is a highly practical technology that can provide high positioning accuracy at levels between cm~dm regardless of user location in the network by extending the available range of RTK using reference station network. In particular, unlike other carrier-based positioning techniques such as PPP, users are able to acquire high-accuracy positions within a short initialization time of a few or tens of seconds, which increases its value as a future navigation system. However, corrections must be continuously received to maintain a high level of positioning accuracy, and when a time delay of more than 30 seconds occurs, the accuracy may be reduced to the code-based positioning level of meters. In case of SSR, which is currently in the process of standardization for PPP service, the corrections by each error source are transmitted in different transmission intervals, and the rate of change of each correction is transmitted together to compensate the time delay. Using these features of SSR correction is expected to reduce the performance degradation even if users do not receive the network RTK corrections for more than 30 seconds. In this paper, the simulation data were generated from 5 domestic reference stations in Gunwi, Yeongdoek, Daegu, Gimcheon, and Yecheon, and the network RTK and SSR corrections were generated for the corresponding data and applied to the simulation data from Cheongsong reference station, assumed as the user. As a result of the experiment assuming 30 seconds of missing data, the positioning performance compensating for time delay by SSR was analyzed to be horizontal RMS (about 5 cm) and vertical RMS (about 8 cm), and the 95% error was 8.7 cm horizontal and 1cm vertical. This is a significant amount when compared to the horizontal and vertical RMS of 0.3 cm and 0.6 cm, respectively, for Network RTK without time delay for the same data, but is considerably smaller compared to the 0.5 ~ 1 m accuracy level of DGPS or SBAS. Therefore, maintaining Network RTK mode using SSR rather than switching to code-based DGPS or SBAS mode due to failure to receive the network RTK corrections for 30 seconds is considered to be favorable in terms of maintaining position accuracy and recovering performance by quickly resolving the integer ambiguity when the communication channel is recovered.

Development for Prediction Model of Disaster Risk through Try and Error Method : Storm Surge (시행 착오법을 활용한 재난 위험도 예측모델 개발 : 폭풍해일)

  • Kim, Dong Hyun;Yoo, HyungJu;Jeong, SeokIl;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.37-43
    • /
    • 2018
  • The storm surge is caused by an typhoons and it is not easy to predict the location, strength, route of the storm. Therefore, research using a scenario for storms occurrence has been conducted. In Korea, hazard maps for various scenarios were produced using the storm surge numerical simulation. Such a method has a disadvantage in that it is difficult to predict when other scenario occurs, and it is difficult to cope with in real time because the simulation time is long. In order to compensate for this, we developed a method to predict the storm surge damage by using research database. The risk grade prediction for the storm surge was performed predominantly in the study area of the East coast. In order to estimate the equation, COMSOL developed by COMSOL AB Corporation was utilized. Using some assumptions and limitations, the form of the basic equation was derived. the constants and coefficients in the equation were estimated by the trial and error method. Compared with the results, the spatial distribution of risk grade was similar except for the upper part of the map. In the case of the upper part of the map, it was shown that the resistance coefficient, k was calculated due to absence of elevation data. The SIND model is a method for real-time disaster prediction model and it is expected that it will be able to respond quickly to disasters caused by abnormal weather.

Radar rainfall prediction based on deep learning considering temporal consistency (시간 연속성을 고려한 딥러닝 기반 레이더 강우예측)

  • Shin, Hongjoon;Yoon, Seongsim;Choi, Jaemin
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.5
    • /
    • pp.301-309
    • /
    • 2021
  • In this study, we tried to improve the performance of the existing U-net-based deep learning rainfall prediction model, which can weaken the meaning of time series order. For this, ConvLSTM2D U-Net structure model considering temporal consistency of data was applied, and we evaluated accuracy of the ConvLSTM2D U-Net model using a RainNet model and an extrapolation-based advection model. In addition, we tried to improve the uncertainty in the model training process by performing learning not only with a single model but also with 10 ensemble models. The trained neural network rainfall prediction model was optimized to generate 10-minute advance prediction data using four consecutive data of the past 30 minutes from the present. The results of deep learning rainfall prediction models are difficult to identify schematically distinct differences, but with ConvLSTM2D U-Net, the magnitude of the prediction error is the smallest and the location of rainfall is relatively accurate. In particular, the ensemble ConvLSTM2D U-Net showed high CSI, low MAE, and a narrow error range, and predicted rainfall more accurately and stable prediction performance than other models. However, the prediction performance for a specific point was very low compared to the prediction performance for the entire area, and the deep learning rainfall prediction model also had limitations. Through this study, it was confirmed that the ConvLSTM2D U-Net neural network structure to account for the change of time could increase the prediction accuracy, but there is still a limitation of the convolution deep neural network model due to spatial smoothing in the strong rainfall region or detailed rainfall prediction.

High Quality Video Streaming System in Ultra-Low Latency over 5G-MEC (5G-MEC 기반 초저지연 고화질 영상 전송 시스템)

  • Kim, Jeongseok;Lee, Jaeho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.2
    • /
    • pp.29-38
    • /
    • 2021
  • The Internet including mobile networks is developing to overcoming the limitation of physical distance and providing or acquiring information from remote locations. However, the systems that use video as primary information require higher bandwidth for recognizing the situation in remote places more accurately through high-quality video as well as lower latency for faster interaction between devices and users. The emergence of the 5th generation mobile network provides features such as high bandwidth and precise location recognition that were not experienced in previous-generation technologies. In addition, the Mobile Edge Computing that minimizes network latency in the mobile network requires a change in the traditional system architecture that was composed of the existing smart device and high availability server system. However, even with 5G and MEC, since there is a limit to overcome the mobile network state fluctuations only by enhancing the network infrastructure, this study proposes a high-definition video streaming system in ultra-low latency based on the SRT protocol that provides Forward Error Correction and Fast Retransmission. The proposed system shows how to deploy software components that are developed in consideration of the nature of 5G and MEC to achieve sub-1 second latency for 4K real-time video streaming. In the last of this paper, we analyze the most significant factor in the entire video transmission process to achieve the lowest possible latency.

Development of an Automated Layout Robot for Building Structures (건축물 골조공사 먹매김 시공자동화 로봇 프로토타입 개발)

  • Park, Gyuseon;Kim, Taehoon;Lim, Hyunsu;Oh, Jhonghyun;Cho, Kyuman
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.689-700
    • /
    • 2022
  • Layout work for building structures requires high precision to construct structural elements in the correct location. However, the accuracy and precision of the layout position are affected by the worker's skill, and productivity can be reduced when there is information loss and error. To solve this problem, it is necessary to automate the overall layout operation and introduce information technology, and layout process automation using construction robots can be an effective means of doing this. This study develops a prototype of an automated layout robot for building structures and evaluates its basic performance. The developed robot is largely composed of driving, marking, sensing, and control units, and is designed to enable various driving methods, and movement and rotation of the marking unit in consideration of the environment on structural work. The driving and marking performance experiments showed satisfactory performance in terms of driving distance error and marking quality, while the need for improvement in terms of some driving methods and marking precision was confirmed. Based on the results of this study, we intend to continuously improve the robot's performance and establish an automation system for overall layout work process.

A study of artificial neural network for in-situ air temperature mapping using satellite data in urban area (위성 정보를 활용한 도심 지역 기온자료 지도화를 위한 인공신경망 적용 연구)

  • Jeon, Hyunho;Jeong, Jaehwan;Cho, Seongkeun;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.855-863
    • /
    • 2022
  • In this study, the Artificial Neural Network (ANN) was used to mapping air temperature in Seoul. MODerate resolution Imaging Spectroradiomter (MODIS) data was used as auxiliary data for mapping. For the ANN network topology optimizing, scatterplots and statistical analysis were conducted, and input-data was classified and combined that highly correlated data which surface temperature, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), time (satellite observation time, Day of year), location (latitude, hardness), and data quality (cloudness). When machine learning was conducted only with data with a high correlation with air temperature, the average values of correlation coefficient (r) and Root Mean Squared Error (RMSE) were 0.967 and 2.708℃. In addition, the performance improved as other data were added, and when all data were utilized the average values of r and RMSE were 0.9840 and 1.883℃, which showed the best performance. In the Seoul air temperature map by the ANN model, the air temperature was appropriately calculated for each pixels topographic characteristics, and it will be possible to analyze the air temperature distribution in city-level and national-level by expanding research areas and diversifying satellite data.

Evaluation of Usefulness and Fabrication of Femur Phantom on Quality Control of Bone Mineral Density Using 3D Printing Technology (3D 프린팅기술을 이용한 골밀도 정도관리 대퇴골 팬텀 제작 및 유용성 평가)

  • Da-Yeong, Hong;Jeong, Lee;Jun-Ho, Lee;Jae-Won, Mun;Han-Saem, Oh;Yu-Won, Jeong;Seong-Hyun, Jin;Jong-Min, Hong;In-Ja, Lee
    • Journal of radiological science and technology
    • /
    • v.46 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • As the demand for bone mineral density testing increases in Korea, which is close to an aging society, it is necessary to evaluate the repeatability of equipment such as femur phantom other than l-spine for more accurate diagnosis. However, in clinical practice, it is often not possible to proceed such evaluation due to insufficient quality control conditions. Therefore, this study is to evaluate the usefulness of the femur phantom after fabricating the same using 3D printing technology. The femur phantom was output using GlowFill filament and FDM 3D printing type. Each phantom was repeatedly scaned 20 times to compare whether the existing l-spine phantom and the fabricated femur phantom were suitable as a phantom for quality control. Each time the seven researchers took three times, the location of the femur phantom was readjusted, and then scanned to confirm the error between the researchers. As a result of conducting repeatability evaluation using femur phantom, the coefficient of variation rate was 2%, which was within the minimum precision tolerance of 2.5%. The reproducibility between the researcher was also found to be suitable as the average coefficient of variation was 0.031 and the coefficient of variation rate was 3.1%, which was within the minimum precision error range of 5%. In conclusion, it is considered that the prospective attitude and usefulness of the femur phantom fabricated by 3D printing in clinical practice will be sufficient.

Underground Facility Survey and 3D Visualization Using Drones (드론을 활용한 지하시설물측량 및 3D 시각화)

  • Kim, Min Su;An, Hyo Won;Choi, Jae Hoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • In order to conduct rapid, accurate and safe surveying at the excavation site, In this study, the possibility of underground facility survey using drones and the expected effect of 3D visualization were obtained as follows. Phantom4Pro 20MP drones have a 30m flight altitude and a redundant 85% flight plan, securing a GSD (Ground Sampling Distance) value of 0.85mm and 4points of GCP (Groud Control Point)and 2points of check point were calculated, and 7.3mm of ground control point and 11mm of check point were obtained. The importance of GCP was confirmed when measured with low-cost drones. If there is no ground reference point, the error range of X value is derived from -81.2 cm to +90.0 cm, and the error range of Y value is +6.8 cm to 155.9 cm. This study classifies point cloud data using the Pix4D program. I'm sorting underground facility data and road pavement data, and visualized 3D data of road and underground facilities of actual model through overlapping process. Overlaid point cloud data can be used to check the location and depth of the place you want through the Open Source program CloudCompare. This study will become a new paradigm of underground facility surveying.