• 제목/요약/키워드: Location Error

Search Result 1,239, Processing Time 0.033 seconds

Prediction of Land-Use Change based on Urban Growth Scenario in South Korea using CLUE-s Model (도시성장 시나리오와 CLUE-s 모형을 이용한 우리나라의 토지이용 변화 예측)

  • LEE, Yong-Gwan;CHO, Young-Hyun;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.3
    • /
    • pp.75-88
    • /
    • 2016
  • In this study, we used the CLUE-s model to predict the future land-use change based on the urban growth scenario in South Korea. The land-use maps of six classes (water, urban, rice paddy, upland crop, forest, and grass) for the year 2008 were obtained from the Ministry of Environment (MOE), and the land-use data for 5-year intervals between 1980 and 2010 were obtained from the Water Resources Management Information System (WAMIS), South Korea. For predicting the future land-use change, the MOE environmental conservation value assessment map (ECVAM) was considered for identifying the development-restricted areas, and various driving factors as location characteristics were prepared for the model. The predicted results were verified by comparing them with the land-use statistics of urban areas in each province for the year 2008. The prediction error rates were 9.47% in Gyeonggi, 9.96% in Gangwon, 10.63% in Chungbuk, 7.53% in Chungnam, 9.48% in Jeonbuk, 6.92% in Jeonnam, 2.50% in Gyeongbuk, and 8.09% in Gyeongnam. The sources of error might come from the gaps between the development of political decisions in reality with spatio-temporal variation and the mathematical model for urban growth rate in CLUE-s model for future scenarios. Based on the land-use scenario in 2008, the land-use predictions for the year 2100 showed that the urban area increased by 28.24%, and the rice paddy, upland crop, and forest areas decreased by 8.27, 6.72, and 1.66%, respectively, in South Korea.

A Study on the Implementation of Ultrasonic Guidance Algorithm for Improving Safety of Ultrasonic Varicose Vein Treatment (초음파 하지정맥류 치료의 안전성 개선을 위한 초음파 유도 알고리즘 구현에 관한 연구)

  • Kim, Seong-Cheol;Kim, Ju-Young;Noh, Si-Cheol;Choi, Heung-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.435-441
    • /
    • 2018
  • In this study, we performed to design an image guiding algorithm to improve the efficiency and safety of treatment of varicose vein by focused ultrasound. The algorithm was suggested by different guiding images according to the location of varicose veins. In the case of deep-seated varicose veins, the target area was marked on the surface of the blood vessel in the obtained cross-sectional blood vessel ultrasound image. In the case of the superficial varicose vein, A guiding system based on image segmentation algorithm of the vascular region was suggested and designed two different algorithms according to varicose veins progression degree. as a results, the algorithm based on ultrasound image show a small error with $830{\mu}m$ at maximum. However, the algorithm based on charge coupled device image has a maximum error of 8.3 mm in some data. Therefore, it is expected that additional study is needed for superficial varicose vein image guiding algorithm, and it is expected that the accuracy of blood vessel tracking should be evaluated by constructing simple system.

Numerical Study on the Development of the Seismic Response Prediction Method for the Low-rise Building Structures using the Limited Information (제한된 정보를 이용한 저층 건물 구조물의 지진 응답 예측 기법 개발을 위한 해석적 연구)

  • Choi, Se-Woon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.271-277
    • /
    • 2020
  • There are increasing cases of monitoring the structural response of structures using multiple sensors. However, owing to cost and management problems, limited sensors are installed in the structure. Thus, few structural responses are collected, which hinders analyzing the behavior of the structure. Therefore, a technique to predict responses at a location where sensors are not installed to a reliable level using limited sensors is necessary. In this study, a numerical study is conducted to predict the seismic response of low-rise buildings using limited information. It is assumed that the available response information is only the acceleration responses of the first and top floors. Using both information, the first natural frequency of the structure can be obtained. The acceleration information on the first floor is used as the ground motion information. To minimize the error on the acceleration history response of the top floor and the first natural frequency error of the target structure, the method for predicting the mass and stiffness information of a structure using the genetic algorithm is presented. However, the constraints are not considered. To determine the range of design variables that mean the search space, the parameter prediction method based on artificial neural networks is proposed. To verify the proposed method, a five-story structure is used as an example.

A Moving Control of an Automatic Guided Vehicle Based on the Recognition of Double Landmarks (이중 랜드마크 인식 기반 AGV 이동 제어)

  • Jeon, Hye-Gyeong;Hong, Youn-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8C
    • /
    • pp.721-730
    • /
    • 2012
  • In this paper the problem of a moving control of an automatic guided vehicle(AGV) which transports a dead body to a designated cinerator safely in a crematorium, an special indoor environment, will be discussed. Since a method of burying guided lines in the floor is not proper to such an environment, a method of moving control of an AGV based on infrared ray sensors is now proposed. With this approach, the AGV emits infrared ray to the landmarks adheres to the ceiling to find a moving direction and then moves that direction by recognizing them. One of the typical problems for this method is that dead zone and/or overlapping zone may exist when the landmarks are deployed. To resolve this problem, an algorithm of recognizing double landmarks at each time is applied to minimize occurrences of sensing error. In addition, at the turning area to entering the designated cinerator, to fit an AGV with the entrance of the designated cinerator, an algorithm of controlling the velocity of both the inner and outer wheel of it. The functional correctness of our proposed algorithm has been verified by using a prototype vehicle. Our real AGV system has been applied to a crematorium and it moves automatically within an allowable range of location error.

Calibration of Portable Particulate Mattere-Monitoring Device using Web Query and Machine Learning

  • Loh, Byoung Gook;Choi, Gi Heung
    • Safety and Health at Work
    • /
    • v.10 no.4
    • /
    • pp.452-460
    • /
    • 2019
  • Background: Monitoring and control of PM2.5 are being recognized as key to address health issues attributed to PM2.5. Availability of low-cost PM2.5 sensors made it possible to introduce a number of portable PM2.5 monitors based on light scattering to the consumer market at an affordable price. Accuracy of light scatteringe-based PM2.5 monitors significantly depends on the method of calibration. Static calibration curve is used as the most popular calibration method for low-cost PM2.5 sensors particularly because of ease of application. Drawback in this approach is, however, the lack of accuracy. Methods: This study discussed the calibration of a low-cost PM2.5-monitoring device (PMD) to improve the accuracy and reliability for practical use. The proposed method is based on construction of the PM2.5 sensor network using Message Queuing Telemetry Transport (MQTT) protocol and web query of reference measurement data available at government-authorized PM monitoring station (GAMS) in the republic of Korea. Four machine learning (ML) algorithms such as support vector machine, k-nearest neighbors, random forest, and extreme gradient boosting were used as regression models to calibrate the PMD measurements of PM2.5. Performance of each ML algorithm was evaluated using stratified K-fold cross-validation, and a linear regression model was used as a reference. Results: Based on the performance of ML algorithms used, regression of the output of the PMD to PM2.5 concentrations data available from the GAMS through web query was effective. The extreme gradient boosting algorithm showed the best performance with a mean coefficient of determination (R2) of 0.78 and standard error of 5.0 ㎍/㎥, corresponding to 8% increase in R2 and 12% decrease in root mean square error in comparison with the linear regression model. Minimum 100 hours of calibration period was found required to calibrate the PMD to its full capacity. Calibration method proposed poses a limitation on the location of the PMD being in the vicinity of the GAMS. As the number of the PMD participating in the sensor network increases, however, calibrated PMDs can be used as reference devices to nearby PMDs that require calibration, forming a calibration chain through MQTT protocol. Conclusions: Calibration of a low-cost PMD, which is based on construction of PM2.5 sensor network using MQTT protocol and web query of reference measurement data available at a GAMS, significantly improves the accuracy and reliability of a PMD, thereby making practical use of the low-cost PMD possible.

Improved characterization method for mobile phone camera and LCD display (모바일 폰 카메라와 LCD의 향상된 특성화 방법)

  • Jang, In-Su;Son, Chang-Hwan;Lee, Cheol-Hee;Song, Kun-Woen;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.2
    • /
    • pp.65-73
    • /
    • 2008
  • The characterization process for the accurate color reproduction in mobile phone with camera and LCD is popular. The camera and LCD characterization, gamut mapping process is necessary to map the camera's input color stimulus, CIEXYZ value, into the LCD's output color stimulus. Each characterization is the process estimating the relation between input and output signals. In case of LCD, because of output device, the output color stimulus for the arbitrary input signal can be measured by spectro-radiometer However, in the camera, as the input device, the characterization is an inaccurate and needs the manual works in the process obtaining the output signal because the input signal can not be generated. Moreover, after gamut mapping process, the noise is increased because the optimized gamma tone curve of camera for the noise is distorted by the characterization. Thus, this paper proposed the system of obtaining the output signal of camera and the method of gamma correction for the noise. The camera's output signal is obtained by RGB values of patches from captured the color chart image. However, besides the illumination, the error for the location of the chart in the viewfinder is generated when many camera modules are captured the chart. The method of correcting the position to correct the error from manual works. The position of camera is estimated by captured image. This process and moving of camera is accomplished repeatedly, and the optimized position can be obtained. Moreover, the lightness curve of camera output is corrected partly to reduce the noise from the characterization process.

Magnetization structure of Aogashima Island using vector magnetic anomalies obtained by a helicopter-borne magnetometer (항공 벡터 자기이상 자료를 이용한 아오가시마섬(청도)의 자화구조 연구)

  • Isezaski, Nobuhiro;Matsuo, Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.17-26
    • /
    • 2009
  • On Aogashima Island, a volcanic island located in the southernmost part of the Izu Seven Islands Chain, vector magnetic anomalies were obtained in a helicopter-borne magnetic survey. The purpose of this study was to understand the volcanic structure of Aogashima Island in order to mitigate future disasters. Commonly, to obtain the magnetic structure of a volcanic island, total intensity anomalies (TIA) have been used, even though they have intrinsic errors that have not been evaluated correctly. Because the total intensity magnetic anomaly (TIA) is not a physical value, it does not satisfy Maxwell's Equations, Laplace's Equation, etc., and so TIA is not suitable for any physical analyses. In addition, it has been conventionally assumed that TIA is the same as the projected total intensity anomaly vector (PTA) for analyses of TIA. However, the effect of the intrinsic error ($\varepsilon_T$ = TIA.PTA) on the analysis results has not been taken into account. To avoid such an effect, vector magnetic anomalies were measured so that a reliable analysis of Aogashima Island magnetization could be carried out. In this study, we evaluated the error in TIA and used vector anomalies to avoid this erroneous effect, in the process obtaining reliable analysis results for 3D, vector magnetization distributions. An area of less than 1 A/m magnetization was found in the south-west part of Aogashima Island at the depth of 1.2 km. Taking the location of fumarolic activity into consideration, the lower-magnetization area was expected to be the source of that fumarolic activity of Aogashima Island.

3D Digital Design Optimization Process Considering Constructability of Freeform Structure (비정형 구조물의 시공성을 고려한 3차원 디지털 설계 최적화 프로세스)

  • Ryu, Han-Guk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.5
    • /
    • pp.35-43
    • /
    • 2013
  • Nowadays the widely used media in architecture include visualizations, animations and three-dimensional models. 3D digital methods using active CAM(Computer Aided Manufacturing) and CNC(Computerized Numerical Control) imaging have been developed for accurate shape and 3D measurements in freeform buildings. In contrast to a conventional building using auto CAD system and others, the proposed digital optimization method is based on a combination of 3D numerical data and parametric 3D model for design and construction. The objective of this paper is therefore to present digital optimization process for constructability of freeform building. The method can be useful in the effective implementation of an error-proofing process of freeform building during design and construction phase. 3D digital coordinate data can be used effectively to identify correct size of structural and finish members and installation location of each members in construction field. In addition, architects, engineers and contractors can evaluate design, materials, constructability and identify error-proofing opportunities. Other project participants can also include representatives from all levels of management, departments as well as workers and key subcontractors' personnel, if necessary. The 3D digital optimization process is therefore appropriate to serious variations in freeform shape. For future study, the developed digital optimization method is necessary to be carried out to verify the robustness and accuracy for constructability in construction field.

A Regression-Based Estimation of Strain Distribution for Safety Monitoring of the Steel Girder Subjected to Uncertain Loads (불확실한 하중을 받는 강재 보 구조물 안전도 모니터링을 위한 변형률 분포의 회귀 분석적 추정)

  • Lee, Ji Hoon;Choi, Se Woon;Park, Hyo Seon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.10-20
    • /
    • 2013
  • To evaluate the safety of a beam structure, strains are measured as an indicator of structural states. However, unless strain sensors are installed exactly on where maximum or other representative strains occur, the techniques by which rational assessment through measured strains is accomplished are required. Thus, this study suggests a process to estimate strain distribution on the steel beam from discrete strains measured by sensors. In the presented technique, the targeted beam is regarded to be subjected to unknown loads so that applicability is enhanced. Final strain distribution is given as form of a function after regression analysis. To verify the performance of estimation, a bending test for steel beam on which distributed and concentrated loads simultaneously act is conducted. From the comparison between estimated and directly measured strains in the test, the curve of strain distribution and the strain at arbitrary location could be predicted within maximum relative error 3.32% and maximum absolute error of $2.32{\mu}{\varepsilon}$, respectively. Thus reliable and practical monitoring is expected to apply effectively for the steel beam structure.

Analysis of Land Use Change within Four Major River Areas Using High-Resolution Air-Photographs: The Case of the Nakdong River Basin (고해상도 항공사진을 이용한 4대강 하천구역 내 토지이용변화 분석 - 낙동강 유역을 사례로)

  • Park, Soo-Kuk;Kim, Jin;Lee, Kil-Jae;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.4
    • /
    • pp.171-188
    • /
    • 2013
  • Landuse changes and cadastral information error categories in the four major river areas were analyzed for the use of policy data as cadastral re-arrangement of national and public lands would be required, using high-resolution air-photographs and cadastral maps before and after the river development. The study sites were the river areas of 40km around four dams of the Nakdong river where their landuses were changed most. As the results, national and public lands reached 79.9% of land parcels and 93.3% of land areas of the study sites similar with those of the four river areas, 84.3% of land parcels and 85.5% of land areas. The landuse classification of the study sites before the four river development was consisted most of 'river'(71.6%) and 'rice field'(12.3%), but after the development the 'river' was reduced to 42.7% and 'park area'(19.6%) including sport fields and 'mixed lots'(20.8%) were increased. Also, 86.7% of land parcels before the development could be reduced after the development if administrative districts and land ownerships were not considered. Cadastral information error categories can be found as cadastral polygon missing, polygon overlap, location and boundary non-coincidence, small polygon generation, and non-coincidence between cadastral boundary and river boundary. Landuse change monitoring method using air-photographs will be useful to analyze landuse state through fast information aquisition and to manage properties of national and public lands such as river areas.