• Title/Summary/Keyword: Location Detection Technology

Search Result 397, Processing Time 0.03 seconds

Analysis of Twinkling Artifacts Caused by Kidney Stones on Abdominal Ultrasound (복부 초음파 검사에서 신장결석으로 인해 발생되는 Twinkling 인공물에 관한 분석)

  • Kim, Ju-Hee;Jang, Hyon-Chol;Cho, Pyong-Kon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.637-642
    • /
    • 2021
  • Kidney stones are largely classified into kidney stones, ureter stones, and urolithiasis depending on the location of their occurrence. Therefore, in this study, from January 2019 to June 2021, kidney stones found in 112 patients with flank pain or who visited for abdominal ultrasonography at a general hospital located in Daegu were diagnosed with urolithiasis. We wanted to investigate the effect on twinkling artifacts. As a result of the study, the incidence of twinkling artifacts due to kidney stones was relatively high in the longitudinal scan among the scan methods. As the number of kidney stones increased, the incidence of twinkling artifacts increased by 1.296 times (p<0.05). As the kidney stone size increased, the incidence of twinkling artifacts increased by 0.086-fold (p<0.05). It was found that the number and size of kidney stones are factors affecting twinkling artifacts. Since the effect of kidney stones on twinkling artifacts is related to the number and size of kidney stones, continuous attention should be paid to helping the detection of kidney stones by using variables affecting twinkling artifacts.

Technology Development for Non-Contact Interface of Multi-Region Classifier based on Context-Aware (상황 인식 기반 다중 영역 분류기 비접촉 인터페이스기술 개발)

  • Jin, Songguo;Rhee, Phill-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.175-182
    • /
    • 2020
  • The non-contact eye tracking is a nonintrusive human-computer interface providing hands-free communications for people with severe disabilities. Recently. it is expected to do an important role in non-contact systems due to the recent coronavirus COVID-19, etc. This paper proposes a novel approach for an eye mouse using an eye tracking method based on a context-aware based AdaBoost multi-region classifier and ASSL algorithm. The conventional AdaBoost algorithm, however, cannot provide sufficiently reliable performance in face tracking for eye cursor pointing estimation, because it cannot take advantage of the spatial context relations among facial features. Therefore, we propose the eye-region context based AdaBoost multiple classifier for the efficient non-contact gaze tracking and mouse implementation. The proposed method detects, tracks, and aggregates various eye features to evaluate the gaze and adjusts active and semi-supervised learning based on the on-screen cursor. The proposed system has been successfully employed in eye location, and it can also be used to detect and track eye features. This system controls the computer cursor along the user's gaze and it was postprocessing by applying Gaussian modeling to prevent shaking during the real-time tracking using Kalman filter. In this system, target objects were randomly generated and the eye tracking performance was analyzed according to the Fits law in real time. It is expected that the utilization of non-contact interfaces.

A Study on Transport Robot for Autonomous Driving to a Destination Based on QR Code in an Indoor Environment (실내 환경에서 QR 코드 기반 목적지 자율주행을 위한 운반 로봇에 관한 연구)

  • Se-Jun Park
    • Journal of Platform Technology
    • /
    • v.11 no.2
    • /
    • pp.26-38
    • /
    • 2023
  • This paper is a study on a transport robot capable of autonomously driving to a destination using a QR code in an indoor environment. The transport robot was designed and manufactured by attaching a lidar sensor so that the robot can maintain a certain distance during movement by detecting the distance between the camera for recognizing the QR code and the left and right walls. For the location information of the delivery robot, the QR code image was enlarged with Lanczos resampling interpolation, then binarized with Otsu Algorithm, and detection and analysis were performed using the Zbar library. The QR code recognition experiment was performed while changing the size of the QR code and the traveling speed of the transport robot while the camera position of the transport robot and the height of the QR code were fixed at 192cm. When the QR code size was 9cm × 9cm The recognition rate was 99.7% and almost 100% when the traveling speed of the transport robot was less than about 0.5m/s. Based on the QR code recognition rate, an experiment was conducted on the case where the destination is only going straight and the destination is going straight and turning in the absence of obstacles for autonomous driving to the destination. When the destination was only going straight, it was possible to reach the destination quickly because there was little need for position correction. However, when the destination included a turn, the time to arrive at the destination was relatively delayed due to the need for position correction. As a result of the experiment, it was found that the delivery robot arrived at the destination relatively accurately, although a slight positional error occurred while driving, and the applicability of the QR code-based destination self-driving delivery robot was confirmed.

  • PDF

Calculation Method of Oil Slick Area on Sea Surface Using High-resolution Satellite Imagery: M/V Symphony Oil Spill Accident (고해상도 광학위성을 이용한 해상 유출유 면적 산출: 심포니호 기름유출 사고 사례)

  • Kim, Tae-Ho;Shin, Hye-Kyeong;Jang, So Yeong;Ryu, Joung-Mi;Kim, Pyeongjoong;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1773-1784
    • /
    • 2021
  • In order to minimize damage to oil spill accidents in the ocean, it is essential to collect a spilled area as soon as possible. Thus satellite-based remote sensing is a powerful source to detect oil spills in the ocean. With the recent rapid increase in the number of available satellites, it has become possible to generate a status report of marine oil spills soon after the accident. In this study, the oil spill area was calculated using various satellite images for the Symphony oil spill accident that occurred off the coast of Qingdao Port, China, on April 27, 2021. In particular, improving the accuracy of oil spill area determination was applied using high-resolution commercial satellite images with a spatial resolution of 2m. Sentinel-1, Sentinel-2, LANDSAT-8, GEO-KOMPSAT-2B (GOCI-II) and Skysat satellite images were collected from April 27 to May 13, but five images were available considering the weather conditions. The spilled oil had spread northeastward, bound for coastal region of China. This trend was confirmed in the Skysat image and also similar to the movement prediction of oil particles from the accident location. From this result, the look-alike patch observed in the north area from the Sentinel-1A (2021.05.01) image was discriminated as a false alarm. Through the survey period, the spilled oil area tends to increase linearly after the accident. This study showed that high-resolution optical satellites can be used to calculate more accurately the distribution area of spilled oil and contribute to establishing efficient response strategies for oil spill accidents.

Usefulness of Hepatocellular Carcinoma by Hepatic Arterial Perfusion Scintigraphy with $^{99m}Tc$-MAA ($^{99m}Tc$-MAA를 이용한 간세포암의 간동맥 관류 스캔의 유용성)

  • Jeong, Ji-Uk;Lee, Hyo-Yeong;Yun, Jong-Jun;Lee, Hwa-Jin;Lee, Moo-Seok;Song, Hyeon-Seok;Park, Se-Yun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.155-158
    • /
    • 2010
  • Purpose: $^{99m}Tc$-macroaggregated albumin (MAA) hepatic arterial perfusion scintigraphy was known for useful method to evaluate patients receiving intraarterial chemotherapy for liver cancer. This study evaluate about usefulness of normal liver on hepatocellular carcinoma (HCC) from HCC patients. This study is to see the usefullness of Hepatic Arterial Perfusion Scintigraphy (HAPS) by measuring mass size, shape, lung shunting and tumor to normal ratio (T/N ratio) in relative blood stream of HCC patients compared with HCC on normal liver. Materials and Methods: From June 2009 to September 2009, HAPS studies were performed on 7 patients (men 6, women 1, mean 64) who were diagnosed HCC. HAPS was performed after proper hepatic artery $^{99m}Tc$-MAA of 5 mCi (185 MBq) injection by catheter. We performed anterior, posterior, both lateral view, SPECT of chest and abdomen. Then we set up ROI and calculated lung shunting, T/N ratio for each count, count/pixel (mean value). Results: Tumor and liver size analyzed by ROI of anterior, posterior view are 2.0-10.8 cm (mean 3.75 cm), 8.8-18.5 cm (mean 14.6 cm). T/N ratio analyzed by total tumor and total normal mean value are 2.41-5.76 (mean 3.8). lung shunting analyzed by total liver count is 3.14-13.92% (mean 6.77%). Conclusion: HAPS with $^{99m}Tc$-MAA can evaluate mass size, location, quantitative analysis through T/N ratio. also HAPS can evaluate detection of arteriovenous shunt through lung uptake before radioisotope therapy. Therefore HAPS with $^{99m}Tc$-MAA can be useful method in aspect of evaluation and treatment of HCC.

  • PDF

A study on the location of fire fighting appliances in cargo ships (화물선 소화설비 비치에 대한 연구)

  • Ha, Weon-Jae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.852-858
    • /
    • 2016
  • To safeguard the accommodation spaces on cargo ships from fire, structural fire protection provisions introduced by SOLAS and these measures retard the propagation of flames and smoke. SOLAS also specifies provisions for fire fighting drills. These provisions are a combination of regulations regarding structure and equipment and those dealing with the human element for the fire protection and effective responses in the event of fire. Requirements related to the human element play a supporting role to the requirements for structure and equipment because the present accommodation structure and equipment are insufficient for extinguishing a fire, therefore, fire-extinguishing activity performed by crew members is essential. To reduce human error and ensure effective fire fighting, it is necessary to install a fire-fighting system and improve the fire fighting process. The fundamental concept of fire fighting exercises is to commence fire fighting before the fire grows too big to extinguish. It is essential to relocate the storage place of fire fighting equipment to expedite the fire-fighting exercise. This study was carried out to reduce human risk for this purpose, the fire control station was relocated to a site that could be accessed from the open deck. Further, two sets of a fire fighter's outfit were stored at the same site. This relocation eliminated the risk of the crew reentering to operate the fire fighting system in the fire control station and allowed the crew to pick up the fire fighters' outfits quickly in the event of a fire. In addition, it was proposed that the IIC method be made mandatory. This method is combination of automatic fire detection system and sprinkler system which can reduce the risk of the fire fighting exercises for the crew and to suppress fire in the initial stage. This study was carried out to provide a foundation to the possible amendment of the relevant SOLAS regulations and national legislation.

Study of Feature Based Algorithm Performance Comparison for Image Matching between Virtual Texture Image and Real Image (가상 텍스쳐 영상과 실촬영 영상간 매칭을 위한 특징점 기반 알고리즘 성능 비교 연구)

  • Lee, Yoo Jin;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1057-1068
    • /
    • 2022
  • This paper compares the combination performance of feature point-based matching algorithms as a study to confirm the matching possibility between image taken by a user and a virtual texture image with the goal of developing mobile-based real-time image positioning technology. The feature based matching algorithm includes process of extracting features, calculating descriptors, matching features from both images, and finally eliminating mismatched features. At this time, for matching algorithm combination, we combined the process of extracting features and the process of calculating descriptors in the same or different matching algorithm respectively. V-World 3D desktop was used for the virtual indoor texture image. Currently, V-World 3D desktop is reinforced with details such as vertical and horizontal protrusions and dents. In addition, levels with real image textures. Using this, we constructed dataset with virtual indoor texture data as a reference image, and real image shooting at the same location as a target image. After constructing dataset, matching success rate and matching processing time were measured, and based on this, matching algorithm combination was determined for matching real image with virtual image. In this study, based on the characteristics of each matching technique, the matching algorithm was combined and applied to the constructed dataset to confirm the applicability, and performance comparison was also performed when the rotation was additionally considered. As a result of study, it was confirmed that the combination of Scale Invariant Feature Transform (SIFT)'s feature and descriptor detection had the highest matching success rate, but matching processing time was longest. And in the case of Features from Accelerated Segment Test (FAST)'s feature detector and Oriented FAST and Rotated BRIEF (ORB)'s descriptor calculation, the matching success rate was similar to that of SIFT-SIFT combination, while matching processing time was short. Furthermore, in case of FAST-ORB, it was confirmed that the matching performance was superior even when 10° rotation was applied to the dataset. Therefore, it was confirmed that the matching algorithm of FAST-ORB combination could be suitable for matching between virtual texture image and real image.