• Title/Summary/Keyword: Location Allocation

Search Result 250, Processing Time 0.022 seconds

Development of ATP Train Separation Control Simulator for Radio-based Train Control System (무선통신기반 열차제어시스템 ATP 열차간격제어알고리즘 시뮬레이터 개발)

  • Yoon, Yong-Ki;Oh, She-Chan;Choi, June-Young;Park, Jae-Young;Yang, Hai-Won
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.1
    • /
    • pp.29-36
    • /
    • 2012
  • This paper includes ATP(Automatic Train Protection) simulator development and ATP algorithm verification to allocate wayside and train-borne and verify ATP functions of communications based train control system. The train control system has some characteristics such as simple structure and high safety when wireless communication technology is applied to the train control system. Especially, vital functions can be performed with in wayside and train-borne ATP. However, different system can be realized because I/F contents vary in accordance with vital functional allocation of ATP. Drawing characteristics in accordance with wayside and train-borne functional allocation and drawing I/F details affected by such characteristics are needed accordingly. This paper includes ATP simulator development creating train location information by direct activation of an electric motor, verifies train safety distance control algorithm of ATP by functional allocation such as train movement authority and train speed limit to ATP, and draws any supplementation needed. Appropriate simulated environment for verify ATP algorithm and main factors that affect to the ATP function were confirmed.

Optimal Location Allocation of CCTV Using 3D Simulation (3차원 시뮬레이션을 활용한 CCTV 최적입지선정)

  • PARK, Jeong-Woo;LEE, Seong-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.92-105
    • /
    • 2016
  • This study aims to establish a simulation method for CCTV (Closed Circuit Television) sight area. The simulation incorporates variables for computing CCTV sight area including CCTV specifications and installation. Currently CCTV is used for traffic, crime prevention and fire prevention by local governments. However, new locations are selected by administrator decision rather than analysis of the optimal location. In order to determine optimum location, a method to CCTV compute range is needed, which incorporates specifications according to CCTV purpose. For this purpose, limitations of previous research methods must be recognized and the simulation method must supplement these limitations. Here in this study, we derived CCTV sight area variables for realistic analysis to complement the limitations of previous studies. A total of eight elements were derived from image device sensors and installation: wide angle, height, angle, setting height, setting angle, and others. This research implemented a 3D simulation technique that can be applied to the derived factors and automate them using ArcObject and Visual C#. This simulation method can calculate sight range in accordance with CCTV specifications. Furthermore, when installing additional CCTVs, it can derive optimal allocation position. The results of this study will provide rational choices for specification selection and CCTV location by interagency collaborative projects.

Shelter location-allocation for Tsunami Using Floating Population and Genetic Algorithm (유동인구 데이터와 유전자 알고리즘을 이용한 지진해일 대피소 선정)

  • Bae, Junsu;Kim, Mi-Kyeong;Yoo, Suhong;Heo, Joon;Sohn, Hong-Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.157-165
    • /
    • 2019
  • Recently, large and small earthquakes have occurred in the Korean peninsula. In this sense, Korea is no longer considered as an earthquake free zone. Especially, it is necessary to respond quickly to earthquake tsunami which may be caused by the influence of neighboring countries with large earthquakes. Since the occurrence of tsunamis can cause great casualties, it is very important to allocate the location of the shelter in case of an earthquake. Although many researches on shelter allocation have been conducted in various ways, but most of them have been analyzed based on administrative district resident data, resulting in a lack of reality. In this study, floating population data were used to reflect reality in case of emergency situations, and genetic algorithm, which produce good results among the heuristic algorithms, was used to select shelter locations. The number of evacuees was used as a objective function of genetic algorithm and the optimal solution was found through selection, crossover and mutation. As a result of the research on Busan Haeundae-Gu, selected as a research area, allocating eight shelters was the most efficient. The location of the new shelters was selected not only in residential areas but also in major tourist areas whose results can not be derived from administrative district resident data alone, and the importance of utilizing the floating population data was confirmed through this study.

Machine Learning based Optimal Location Modeling for Children's Smart Pedestrian Crosswalk: A Case Study of Changwon-si (머신러닝을 활용한 어린이 스마트 횡단보도 최적입지 선정 - 창원시 사례를 중심으로 -)

  • Lee, Suhyeon;Suh, Youngwon;Kim, Sein;Lee, Jaekyung;Yun, Wonjoo
    • Journal of KIBIM
    • /
    • v.12 no.2
    • /
    • pp.1-11
    • /
    • 2022
  • Road traffic accidents (RTAs) are the leading cause of accidental death among children. RTA reduction is becoming an increasingly important social issue among children. Municipalities aim to resolve this issue by introducing "Smart Pedestrian Crosswalks" that help prevent traffic accidents near children's facilities. Nonetheless such facilities tend to be installed in relatively limited number of areas, such as the school zone. In order for budget allocation to be efficient and policy effects maximized, optimal location selection based on machine learning is needed. In this paper, we employ machine learning models to select the optimal locations for smart pedestrian crosswalks to reduce the RTAs of children. This study develops an optimal location index using variable importance measures. By using k-means clustering method, the authors classified the crosswalks into three types after the optimal location selection. This study has broadened the scope of research in relation to smart crosswalks and traffic safety. Also, the study serves as a unique contribution by integrating policy design decisions based on public and open data.

Spatial Operation Allocation Scheme over Common Query Regions for Distributed Spatial Data Stream Processing (분산 공간 데이터 스트림 처리에서 질의 영역의 겹침을 고려한 공간 연산 배치 기법)

  • Chung, Weon-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2713-2719
    • /
    • 2012
  • According to increasing of various location-based services, distributed data stream processing techniques have been widely studied to provide high scalability and availability. In previous researches, in order to balance the load of distributed nodes, the geographic characteristics of spatial data stream are not considered. For this reason, distributed operations for adjacent spatial regions increases the overall system load. We propose a operation allocation scheme considering the characteristics of spatial operations to effectively processing spatial data stream in distributed computing environments. The proposed method presents the efficient share maximizing approach that preferentially distributes spatial operations sharing the common query regions to the same node in order to separate the adjacent spatial operations on overlapped regions.

A design for hub-and-spoke transportation networks using an evolutionary algorithm (진화알고리듬을 이용한 hub-anb-spoke 수송네트워크 설계)

  • Lee, Hyeon-Su;Sin, Gyeong-Seok;Kim, Yeo-Geun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.59-71
    • /
    • 2005
  • In this paper we address a design problem for hub and spoke transportation networks and then consider a capacitated hub locations problem with direct shipment (CHLPwD). We determine the location of hubs, the allocation of nodes to hubs, and direct shipment paths in the network, with the objective of minimizing the total cost in the network. An evolutionary algorithm is developed here to solve the CHLPwD. To do this, we propose the representation and the genetic operators suitable for the problem and adopt a heuristic method for the allocation of nodes to hubs. To enhance the search capability, problem-specific information is used in our evolutionary algorithm. The proposed algorithm is compared with the heuristic method in terms of solution quality and computation time. The experimental results show that our algorithm can provide better solutions than the heuristic.

  • PDF

IP를 이용한 패트리어트 미사일 최적배치모형

  • Lee, Jae-Yeong;Jeong, Chi-Yeong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.10a
    • /
    • pp.38-50
    • /
    • 2005
  • The current Air defense missile, Nike, will be replaced by the Patriot missile in the near future. In this paper, we developed an optimal allocation model for the Patriot missile. In order to formulate the model, we applied a set covering and If model. This model considers not only weapon's characteristics and performances but also the threat of enemy aircrafts and SCUD missiles. When we apply this model, we can find the optimal location of Patriot batteries which maximizes the kill probability of enemy aircrafts and SCUD missiles attacking vital area of our forces. This model can directly be used to the decision making for the optimal military facility allocation.

  • PDF

Modeling and Development of an Integrated Controller for a Ship with Propellers and Additional Propulsion Units (프로펠러와 부가추력장치를 갖는 특수선의 모델링 및 통합제어기 개발)

  • Kim Jong Hwa;Lim Jae Kwon;Lee Byung Kyul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.236-242
    • /
    • 2005
  • Dynamic Positioning(DP) system maintains ship's position (fixed location or predetermined track) exclusively by means of CPPs and thrusters. To generate the control input adequate to various situation an integrated controller for CPPs and thrusters is required. The integrated controller is composed of a thrust calculation algorithm and a thrust allocation algorithm. The thrust calculation algorithm generates thrusts in the surge direction and the sway direction from the desired forward and lateral speed and generates a moment about the yaw axis from desired heading angle. The thrust allocation algorithm allocates the generated thrusts and moment to each CPP and thruster. Computer simulations are executed to confirm the effectiveness of the suggested controller.

Application of Genetic Algorithms to Optimize the Storage Location of Products in Military Logistics (군(軍) 물류창고 내(內) 물품 저장위치 최적화를 위한 유전알고리즘 적용 방안)

  • Ha, Won Yong;Cho, Ki-yang;Han, Chung Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.108-116
    • /
    • 2022
  • Supply in military operations has a significant impact on overall combat capability and efficiency. Therefore, modernization of military logistics is underway to ensure rapid and accurate distribution. And, effective warehouse management is paramount. This paper proposes a new product allocation model that uses a genetic algorithm. The model considers order frequency and mass of products because the military equipment is usually heavier than available products. A computer simulation shows that products are assigned to optimal locations and reduce the consumed energy for forklifts by more than 25 % with similar travel time. Also, we show the superiority of genetic algorithm by comparing them with other algorithms.

The Allocation of Inspection Efforts Using a Knowledge Based System

  • Kang, Kyong-sik;Stylianides, Christodoulos;La, Seung-houn
    • Journal of Korean Society for Quality Management
    • /
    • v.18 no.2
    • /
    • pp.18-24
    • /
    • 1990
  • The location of inspection stations is a significant component of production systems. In this paper, a prototype expert system is designed for deciding the optimal location of inspection stations. The production system is defined as a single channel of n serial operation stations. The potential inspection station can be located after any of the operation stations. Nonconforming units are generated from a compound binomial distribution with known parameters at any given operation station. Traditionally Dynamic programming, Zero-one integer programming, or Non-linear programming techniques are used to solve this problem. However a problem with these techniques is that the computation time becomes prohibitively large when t be number of potential inspection stations are fifteen or more. An expert system has the potential to solve this problem using a rule-based system to determine the near optimal location of inspection stations. This prototype expert system is divided into a static database, a dynamic database and a knowledge base. Based on defined production systems, the sophisticated rules are generated by the simulator as a part of the knowledge base. A generate-and-test inference mechanism is utilized to search the solution space by applying appropriate symbolic and quantitative rules based on input data. The goal of the system is to determine the location of inspection stations while minimizing total cost.

  • PDF