• 제목/요약/키워드: Locally damaged structure

검색결과 7건 처리시간 0.025초

강재 절단용 장약용기를 이용한 철골 교량 발파해체 시공사례 (Case Study on the Explosive Demolition of Steel Truss Bridge using Charge Container for Cutting Structural Steel)

  • 박훈;석철기;노유송
    • 화약ㆍ발파
    • /
    • 제36권1호
    • /
    • pp.20-33
    • /
    • 2018
  • 국부손상 구조물은 내 외부에서 발생하는 비정상 하중에 의해 구조물 일부가 구조적 기능을 상실하여 재사용이 불가능한 구조물이다. 비정상 하중의 발생 원인으로는 자연재해와 인공재해로 대별되며 이러한 비정상 하중에 의해 발생한 국부손상 구조물은 추가적인 2차 붕괴의 위험요소들을 내재하고 있어 신속한 전면해체가 요구된다. 본 시공사례는 건설실패 및 태풍으로 피해를 입은 필리핀의 철골 트러스 구조의 교량에 대해 발파해체를 적용한 사례이다. 발파해체를 위해 성형폭약의 사용이 필요하나 현지에서 수급이 불가하여 장약용기를 제작한 후 용기 속에 에멀전계열 폭약을 충전하여 발파해체에 적용하였다. 발파해체 결과 교량의 중앙부가 수직 자유낙하하고, 교량 끝단이 지지부를 중심으로 회전하면서 자유낙하 하였다. 교각 및 주변에 피해가 발생하지 않았으며, 발파 후 철거대상부의 파쇄 상태는 매우 양호하였다.

Dynamic behaviour of stiffened and damaged coupled shear walls

  • Meftah, S.A.;Tounsi, A.;Adda-Bedia, E.A.
    • Computers and Concrete
    • /
    • 제3권5호
    • /
    • pp.285-299
    • /
    • 2006
  • The free vibration of stiffened and damaged coupled shear walls is investigated using the mixed finite element method. The anisotropic damage model is adopted to describe the damage extent of the reinforced concrete shear wall element. The internal energy of a locally damaged shear wall element is derived. Polynomial shape functions established by Kwan are used to present the component of displacements vector on each point within the wall element. The principle of virtual work is employed to deduce the stiffness matrix of a damaged shear wall element. The stiffened system is reinforced by an additional stiffening beam at some level of the structure. This induces additional axial forces, and thus reduces the bending moments in the walls and the lateral deflection, and increases the natural frequencies. The effects of the damage extent and the stiffening beam on the free vibration characteristics of the structure are studied. The optimal location of the stiffening beam for increasing as far as possible the first natural frequency of vibration is presented.

Hybrid vibration-impedance monitoring in prestressed concrete structure with local strand breakage

  • Dang, Ngoc-Loi;Pham, Quang-Quang;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • 제30권5호
    • /
    • pp.463-477
    • /
    • 2022
  • In this paper, a hybrid vibration-impedance-based damage monitoring approach is experimentally evaluated for prestressed concrete (PSC) structures with local strand breakage. Firstly, the hybrid monitoring scheme is designed to alert damage occurrence from changes in vibration characteristics and to localize strand breakage from changes in impedance signatures. Secondly, a full-scale PSC anchorage is experimented to measure global vibration responses and local impedance responses under a sequence of simulated strand-breakage events. Finally, the measured data are analyzed using the hybrid monitoring framework. The change of structural condition (i.e., damage extent) induced by the local strand breakage is estimated by changes in a few natural frequencies obtained from a few accelerometers in the structure. The damaged strand is locally identified by tomography analysis of impedance features measured via an array of PZT (lead-zirconate-titanate) sensors mounted on the anchorage. Experimental results demonstrate that the strand breakage in the PSC structure can be accurately assessed by using the combined vibration and impedance features.

Experimental and numerical investigations on remaining strengths of damaged parabolic steel tubular arches

  • Huang, Yonghui;Liu, Airong;Pi, Yong-Lin;Bradford, Mark A.;Fu, Jiyang
    • Steel and Composite Structures
    • /
    • 제34권1호
    • /
    • pp.1-15
    • /
    • 2020
  • This paper presents experimental and numerical studies on effects of local damages on the in-plane elastic-plastic buckling and strength of a fixed parabolic steel tubular arch under a vertical load distributed uniformly over its span, which have not been reported in the literature hitherto. The in-plane structural behaviour and strength of ten specimens with different local damages are investigated experimentally. A finite element (FE) model for damaged steel tubular arches is established and is validated by the test results. The FE model is then used to conduct parametric studies on effects of the damage location, depth and length on the strength of steel arches. The experimental results and FE parametric studies show that effects of damages at the arch end on the strength of the arch are more significant than those of damages at other locations of the arch, and that effects of the damage depth on the strength of arches are most significant among those of the damage length. It is also found that the failure modes of a damaged steel tubular arch are much related to its initial geometric imperfections. The experimental results and extensive FE results show that when the effective cross-section considering local damages is used in calculating the modified slenderness of arches, the column bucking curve b in GB50017 or Eurocode3 can be used for assessing the remaining in-plane strength of locally damaged parabolic steel tubular arches under uniform compression. Furthermore, a useful interaction equation for assessing the remaining in-plane strength of damaged steel tubular arches that are subjected to the combined bending and axial compression is also proposed based on the validated FE models. It is shown that the proposed interaction equation can provide lower bound assessments for the remaining strength of damaged arches under in-plane general loading.

촉진시험법을 이용한 하천골재의 알칼리 반응성 판정 (Identification of Alkali Reactivity of Natural Aggregates by Application of a Rapid Method)

  • 양동윤;이창범
    • 자원환경지질
    • /
    • 제30권2호
    • /
    • pp.175-183
    • /
    • 1997
  • The concrete structure can be easily damaged due to alkali-aggregates reaction. There are several methods to identify alkali reactivity of aggregates. The most reliable method is mortar-bar test, but it takes 3 to 12 months for whole test. The authors applied "rapid method" which takes only 7 days for this test. The result of this rapid method follows; expansion ratio of mortar bar for natural aggregates taken at the Youngsan River ranges from 0.197 to 0.489%, but that from Changseong Lake has low expansion ratio of 0.147%, which is below the limit of allowance, 0.168%. Those from the Seomjin River range from 0.173 to 0.22%, and those from the Keum River range from 0.078% to 0.111%. In the case of higher expansion ratio than 0.168%, aggregates must be used with cement containing low alkali content or adding material consuming the alkali content of cement, for example, fly ash and silica fume, etc.. Most of natural aggregates in Cheolla area have no problem in physical properties, particularly the abrasion ratio is below 40%, the limit of allowance. The natural aggregate from Cheolla area consists mostly of gneiss, granite and volcanic rocks. The major alkali reactive materials are quartz mineral with undulatory extinction in gneiss and granite, and amorphous silica in volcanic rocks. Even if a certain aggregate consists of the same kind of rocks and has similar rock composition each other, content of alkali reactivity material can be various, because rock formation is locally different according to temperature and pressure. Therefore every rock type must be physically and chemically identified before using for aggregates.

  • PDF

용문산 상원사 범종의 금속학적 고찰 (Metallurgical Observation of the Buddhist Bell of Youngmoon Mountain Sangwonsa Temple)

  • 도정만;박방주;이정일;홍경태
    • 대한금속재료학회지
    • /
    • 제50권11호
    • /
    • pp.829-838
    • /
    • 2012
  • The microstructure, chemical composition, and lead isotope ratio of the Buddhist bell of Yongmoon Mountain Sangwonsa temple, which was selected as one of the three great bells of Korea by Japanese historians, were analyzed in order to estimate the origin of the material and the time of casting. The microstructure of the temple bell was composed of a copper matrix phase with ${\alpha}$, a face centered cubit lattice structure, a ${\delta}$ phase with $Cu_{41}$ $(Sn,Ag,Sb)_{11}$ as the chemical structural formula, dispersed lead and $Cu_2S$ particles, and locally agglomerated fine particles. Through analysis of the chemical composition of the bell, a criterion (Pb: 0-3.0 wt%, Sn: 10-15 wt%) for distinguishing the bells of the Shilla dynasty from the bells of the Koryo Chosun dynasty is proposed. Examining the lead isotope ratio of $^{207}Pb/^{206}Pb$ and $^{208}Pb/^{206}Pb$ of the Buddhist bell of Sangwonsa temple proved that the bell was fabricated using raw materials in South Korea, which led to the conclusion that the bell was cast in Korea and the top board of the bell has been damaged by an unknown individual. The criteria of distinguishing the bells from the Shilla dynasty from the bells of the Koryo Chosun dynasty presented for the first time in this research is expected to aid in identifying and estimating the previously unclear production years of other bells.

바라쿠다 시뮬레이션을 이용한 유동층 외부 열교환기의 유동해석 (Analysis of Fluidization in a Fluidized Bed External Heat Exchanger using Barracuda Simulation)

  • 이종민;김동원;박경일;이규화
    • Korean Chemical Engineering Research
    • /
    • 제58권4호
    • /
    • pp.642-650
    • /
    • 2020
  • 순환유동층 보일러에서 유동 입자들의 순환 경로는 연소로에서 비산된 입자들이 사이클론에서 포집되어 비기계적 밸브인 실포트(Sealpot)를 거쳐 연소로로 재순환하는 일반적인 경로를 갖는다. 그러나, 유동 입자들로부터 열을 추가적으로 흡수하기 위해 유동층 외부열교환기(FBHE; Fluidized Bed Heat Exchanger)가 설치된 경우, 실포트의 일부 입자들은 FBHE를 거쳐 연소로로 재순환하는 경로를 갖게 된다. 이때 기포유동층 영역으로 운전되는 FBHE는 실포트로부터 유입되는 고온(800~950 ℃)의 입자들의 유동 특성에 따라 열교환 튜브의 국부적 가열로 인한 손상 및 hot spot에 의한 입자들의 고온 뭉침(agglomeration)이 발생할 수 있어 순환유동층의 안정적 조업에 영향을 미칠 수 있다. 본 연구에서는 국내 D 순환유동층 보일러의 FBHE에 대한 운전자료 분석 및 바라쿠다를 통한 CPFD(Computational Particle Fluid Dynamics) 해석을 통해 구조적 문제로부터 발생하는 열흐름의 불균일성을 밝혀내었다. 실제 D 순환유동층의 FBHE 열교환 튜브 온도는 실포트의 고체온도 변화와 가장 밀접한 상관관계를 나타내었으며, FBHE 내의 열흐름의 불균일성은 FBHE의 조업 유속의 증가(0.3→0.7 m/s)로는 그 불균일성을 해소하기 어려운 것으로 나타났다. 그러나, FBHE로 유입되는 고온 입자들에 대한 사전 혼합 영역(Premixing Zone)이 설치된 경우와, 연소로로 재순환되는 입자 배출 라인의 대칭화를 통한 구조변경 시, 입자 혼합의 증대와 더불어 열흐름의 불균일성은 상당 부분 감소하는 것으로 고찰되었다. 이에, FBHE의 구조 최적화가 열교환 성능 및 운전 안정성을 확보하는 대안임을 제시하였다.