• Title/Summary/Keyword: Localization accuracy

Search Result 554, Processing Time 0.026 seconds

Evaluation of the Accuracy for Respiratory-gated RapidArc (RapidArc를 이용한 호흡연동 회전세기조절방사선치료 할 때 전달선량의 정확성 평가)

  • Sung, Jiwon;Yoon, Myonggeun;Chung, Weon Kuu;Bae, Sun Hyun;Shin, Dong Oh;Kim, Dong Wook
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.127-132
    • /
    • 2013
  • The position of the internal organs can change continually and periodically inside the body due to the respiration. To reduce the respiration induced uncertainty of dose localization, one can use a respiratory gated radiotherapy where a radiation beam is exposed during the specific time of period. The main disadvantage of this method is that it usually requests a long treatment time, the massive effort during the treatment and the limitation of the patient selection. In this sense, the combination of the real-time position management (RPM) system and the volumetric intensity modulated radiotherapy (RapidArc) is promising since it provides a short treatment time compared with the conventional respiratory gated treatments. In this study, we evaluated the accuracy of the respiratory gated RapidArc treatment. Total sic patient cases were used for this study and each case was planned by RapidArc technique using varian ECLIPSE v8.6 planning machine. For the Quality Assurance (QA), a MatriXX detector and I'mRT software were used. The results show that more than 97% of area gives the gamma value less than one with 3% dose and 3 mm distance to agreement condition, which indicates the measured dose is well matched with the treatment plan's dose distribution for the gated RapidArc treatment cases.

Dose Verification Using Pelvic Phantom in High Dose Rate (HDR) Brachytherapy (자궁경부암용 팬톰을 이용한 HDR (High dose rate) 근접치료의 선량 평가)

  • 장지나;허순녕;김회남;윤세철;최보영;이형구;서태석
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.15-19
    • /
    • 2003
  • High dose rate (HDR) brachytherapy for treating a cervix carcinoma has become popular, because it eliminates many of the problems associated with conventional brachytherapy. In order to improve the clinical effectiveness with HDR brachytherapy, a dose calculation algorithm, optimization procedures, and image registrations need to be verified by comparing the dose distributions from a planning computer and those from a phantom. In this study, the phantom was fabricated in order to verify the absolute doses and the relative dose distributions. The measured doses from the phantom were then compared with the treatment planning system for the dose verification. The phantom needs to be designed such that the dose distributions can be quantitatively evaluated by utilizing the dosimeters with a high spatial resolution. Therefore, the small size of the thermoluminescent dosimeter (TLD) chips with a dimension of <1/8"and film dosimetry with a spatial resolution of <1mm used to measure the radiation dosages in the phantom. The phantom called a pelvic phantom was made from water and the tissue-equivalent acrylic plates. In order to firmly hold the HDR applicators in the water phantom, the applicators were inserted into the grooves of the applicator holder. The dose distributions around the applicators, such as Point A and B, were measured by placing a series of TLD chips (TLD-to-TLD distance: 5mm) in the three TLD holders, and placing three verification films in the orthogonal planes. This study used a Nucletron Plato treatment planning system and a Microselectron Ir-192 source unit. The results showed good agreement between the treatment plan and measurement. The comparisons of the absolute dose showed agreement within $\pm$4.0 % of the dose at point A and B, and the bladder and rectum point. In addition, the relative dose distributions by film dosimetry and those calculated by the planning computer show good agreement. This pelvic phantom could be a useful to verify the dose calculation algorithm and the accuracy of the image localization algorithm in the high dose rate (HDR) planning computer. The dose verification with film dosimetry and TLD as quality assurance (QA) tools are currently being undertaken in the Catholic University, Seoul, Korea.

  • PDF

Usefulness of Ultrasonographic Examination by a Pediatrician in Children with Abdominal Pain (소아 복통에서 소아과 의사에 의한 초음파 검사의 유용성)

  • Park, Hyun-Seok;We, Ju-Hee;Park, Jae-Hong
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.14 no.2
    • /
    • pp.141-147
    • /
    • 2011
  • Purpose: Ultrasonography (US) is widely used as a screening test in patients with abdominal pain (AP). We investigated the usefulness of US by a pediatrician in children with AP. Methods: We retrospectively analysed the medical records of children with AP who undertook US from December, 2008 to July, 2010. Results: A total of 628 patients (325 male, 303 female) were enrolled in this study. The mean age of patients was $8.08{\pm}4.61$ years. Duration of AP was acute in 427 and chronic in 201 patients. Localization of AP was diffuse (36.9%), periumbilical (24.4%), epigastric (21.0%), and right lower quadrant (8.1%). On the examination, there were no abnormal findings in 327 patients (52.1%). Abnormal ultrasonographic findings were mesenteric lymphadenitis (27.1%), intestinal mural thickening (10.0%), intussusception (3.0%), appendicitis (2.6%), choledochal cyst (1.6%), and pancreatitis (0.3%). We performed additional imaging studies such as computed tomography (CT) or magnetic resonance imaging (MRI) in 39 patients who showed obscure findings on the US. In 33 patients (84.6%), the same results were obtained from CT or MRI. Two cases of appendicitis, one case of pancreatitis and one case of Henoch-Sh$\ddot{o}$nlein purpura were diagnosed by the CT examination. However, there were two cases of appendicitis diagnosed by US thathad no evidence of appendicitis on the CT. Diagnostic accuracy of initial US in children with abdominal pain was 99.4%. Conclusion: US by a pediatrician as a screening test in children with AP provides a rapid and accurate diagnostic indication and has non-invasive and radiation-free advantages.

USABILITY EVALUATION OF PLANNING MRI ACQUISITION WHEN CT/MRI FUSION OF COMPUTERIZED TREATMENT PLAN (전산화 치료계획의 CT/MRI 영상 융합 시 PLANNING MRI영상 획득의 유용성 평가)

  • Park, Do-Geun;Choe, Byeong-Gi;Kim, Jin-Man;Lee, Dong-Hun;Song, Gi-Won;Park, Yeong-Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.127-135
    • /
    • 2014
  • Purpose : By taking advantage of each imaging modality, the use of fused CT/MRI image has increased in prostate cancer radiation therapy. However, fusion uncertainty may cause partial target miss or normal organ overdose. In order to complement such limitation, our hospital acquired MRI image (Planning MRI) by setting up patients with the same fixing tool and posture as CT simulation. This study aims to evaluate the usefulness of the Planning MRI through comparing and analyzing the diagnostic MRI image and Planning MRI image. Materials and Methods : This study targeted 10 patients who had been diagnosed with prostate cancer and prescribed nonhormone and definitive RT 70 Gy/28 fx from August 2011 to July 2013. Each patient had both CT and MRI simulations. The MRI images were acquired within one half hour after the CT simulation. The acquired CT/MRI images were fused primarily based on bony structure matching. This study measured the volume of prostate in the images of Planning MRI and diagnostic MRI. The diameters at the craniocaudal, anteroposterior and left-to-right directions from the center of prostate were measured in order to compare changes in the shape of prostate. Results : As a result of comparing the volume of prostate in the images of Planning MRI and diagnostic MRI, they were found to be $25.01cm^3$(range $15.84-34.75cm^3$) and $25.05cm^3$(range $15.28-35.88cm^3$) on average respectively. The diagnostic MRI had an increase of 0.12 % as compared with the Planning MRI. On the planning MRI, there was an increase in the volume by $7.46cm^3$(29 %) at the transition zone directions, and there was a decrease in the volume by $8.52cm^3$(34 %) in the peripheral zone direction. As a result of measuring the diameters at the craniocaudal, anteroposterior and left-to-right directions in the prostate, the Planning MRI was found to have on average 3.82cm, 2.38cm and 4.59cm respectively and the diagnostic MRI was found to have on average 3.37cm, 2.76cm and 4.51cm respectively. All three prostate diameters changed and the change was significant in the Planning MRI. On average, the anteroposterior prostate diameter decrease by 0.38cm(13 %). The mean right-to-left and craniocaudal diameter increased by 0.08cm(1.6 %) and 0.45cm(13 %), respectively. Conclusion : Based on the results of this study, it was found that the total volumes of prostate in the Planning MRI and the diagnostic MRI were not significantly different. However, there was a change in the shape and partial volume of prostate due to the insertion of prostate balloon tube to the rectum. Thus, if the Planning MRI images were used when conducting the fusion of CT/MRI images, it would be possible to include the target in the CTV without a loss as much as the increased volume in the transition zone. Also, it would be possible to reduce the radiation dose delivered to the rectum through separating more clearly the reduction of peripheral zone volume. Therefore, the author of this study believes that acquisition of Planning MRI image should be made to ensure target delineation and localization accuracy.