• 제목/요약/키워드: Localization accuracy

검색결과 550건 처리시간 0.022초

ZigBee 실내 위치 인식 알고리즘의 정확도 평가 (Accuracy evaluation of ZigBee's indoor localization algorithm)

  • 노안젤라송이;이웅재
    • 인터넷정보학회논문지
    • /
    • 제11권1호
    • /
    • pp.27-33
    • /
    • 2010
  • 본 논문은 실내 위치 인식을 위하여 ZigBee 이동 장치의 위치를 측정하였으며 Bayesian Markov 위치 추론 기법을 적용하였다. 정확도 분석을 위해 기존의 지도 기반의 위치 인식 기법과 비교하였는데 이 기법은 이미 지정된 위치에서의 RSSI 데이터를 데이터베이스화하여 참조하도록 하는 반면 Bayesian Markov 추론 방법은 시간, 방향, 거리의 변화에 영향을 받았다. 이 두가지 방법에 따른 측정은 지그비 모듈을 사용하여 RSSI를 측정한 결과를 토대로 이루어졌으며 그 결과 실내에서의 RSSI와 거리와의 관계로 접근하는 것이 바람직하며 Bayesian Markov에 의한 분석결과 기존의 지도 기반 위치 인식 기법에 비하여 높은 정확도를 보여주었다. 결과적으로 기존의 지도 기반 위치 인식 기법은 사전에 환경 요인에 대한 설정을 해주어야 하고, 보다 낮은 정확도를 가지고 있으므로 환경 변화가 잦은 실내에서는 부적합하다고 생각된다.

GPS 전파교란원 위치 추정을 위한 TDOA/AOA 복합 기법 설계 (Hybrid TDOA/AOA Localization Algorithm for GPS Jammers)

  • 임덕원;강재민;허문범
    • 제어로봇시스템학회논문지
    • /
    • 제20권1호
    • /
    • pp.101-105
    • /
    • 2014
  • For a localization system, the TDOA (Time Difference of Arrival) measurement and AOA (Angle of Arrival) measurement are often used for estimating target's positions. Although it is known that the accuracy of TDOA based localization is superior to that of AOA based one, it may have a poor vertical accuracy in bad geometrical conditions. This paper, therefore, proposes a localization algorithm in which the vertical position is estimated by AOA measurements and the horizontal one is estimated by TDOA measurement in order to achieve high 3D-location accuracy. And this algorithm is applied to a GPS jammer localization systems because it has a large value of the DOP (Dilution of Precision) when the jammer is located far away from the system. Simulation results demonstrate that the proposed hybrid TDOA/AOA location algorithm gives much higher location accuracy than TDOA or AOA only location.

보행자의 실내 위치 추정 정확도 향상을 위한 다양한 센서 정보 필터 (Sensor Information Filter for Enhancing the Indoor Pedestrian Localization Accuracy)

  • 김주영;이수용
    • 로봇학회논문지
    • /
    • 제7권4호
    • /
    • pp.276-283
    • /
    • 2012
  • Due to the low localization accuracy and the requirement of special infrastructure, current LBS(Localization Based Service) is limited to show P.O.I.(Point of Interest) nearby. Improvement of IMU(Inertial Measurement Unit) based deadreckoning is presented in this paper. Additional sensors such as the magnetic compass and magnetic flux sensors are used as well as the accelerometer and the gyro for getting more information of movement. Based on the pedestrian movement, appropriate sensor information is selected and the complementary filter is used in order to enhance the accuracy of the localization.

PMDV-hop: An effective range-free 3D localization scheme based on the particle swarm optimization in wireless sensor network

  • Wang, Wenjuan;Yang, Yuwang;Wang, Lei;Lu, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권1호
    • /
    • pp.61-80
    • /
    • 2018
  • Location information of individual nodes is important in the implementation of necessary network functions. While extensive studies focus on localization techniques in 2D space, few approaches have been proposed for 3D positioning, which brings the location closer to the reality with more complex calculation consumptions for high accuracy. In this paper, an effective range-free localization scheme is proposed for 3D space localization, and the sensitivity of parameters is evaluated. Firstly, we present an improved algorithm (MDV-Hop), that the average distance per hop of the anchor nodes is calculated by root-mean-square error (RMSE), and is dynamically corrected in groups with the weighted RMSE based on group hops. For more improvement in accuracy, we expand particle swarm optimization (PSO) of intelligent optimization algorithms to MDV-Hop localization algorithm, called PMDV-hop, in which the parameters (inertia weight and trust coefficient) in PSO are calculated dynamically. Secondly, the effect of various localization parameters affecting the PMDV-hop performance is also present. The simulation results show that PMDV-hop performs better in positioning accuracy with limited energy.

A Localization Algorithm for Underwater Wireless Sensor Networks Based on Ranging Correction and Inertial Coordination

  • Guo, Ying;Kang, Xiaoyue;Han, Qinghe;Wang, Jingjing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권10호
    • /
    • pp.4971-4987
    • /
    • 2019
  • Node localization is the basic task of underwater wireless sensor networks (UWSNs). Most of the existing underwater localization methods rely on ranging accuracy. Due to the special environment conditions in the ocean, beacon nodes are difficult to deploy accurately. The narrow bandwidth and high delay of the underwater acoustic communication channel lead to large errors. In order to reduce the ranging error and improve the positioning accuracy, we propose a localization algorithm based on ranging correction and inertial coordination. The algorithm can be divided into two parts, Range Correction based Localization algorithm (RCL) and Inertial Coordination based Localization algorithm (ICL). RCL uses the geometric relationship between the node positions to correct the ranging error and obtain the exact node position. However, when the unknown node deviates from the deployment area with the movement of the water flow, it cannot communicate with enough beacon nodes in a certain period of time. In this case, the node uses ICL algorithm to combine position data with motion information of neighbor nodes to update its position. The simulation results show that the proposed algorithm greatly improves the positioning accuracy of unknown nodes compared with the existing localization methods.

벤치마크 태그를 이용한 도착시간 차 기반의 RFID 측위 알고리즘 (TDOA-Based Localization Algorithms for RFID Systems Using Benchmark Tags)

  • 주운기
    • 경영과학
    • /
    • 제29권3호
    • /
    • pp.1-11
    • /
    • 2012
  • This paper considers a localization problem in time difference of arrival (TDOA)-based radio frequency identification (RFID) systems. To estimate the position of a target tag, this paper suggests three localization algorithms that use benchmark tags. The benchmark tags are the same type as the target tag, but either the locations or distance of the benchmark tags are known. Two algorithms use the benchmarks for auxiliary information to improve the estimation accuracy of the other localization algorithms such as least squared estimator (LSE). The other one utilizes the benchmarks as essential tags to estimate the location. Numerical tests show that the localization accuracy can be improved by using benchmark tags especially when an algorithm using the LSE is applied to the localization problem. Furthermore, this paper shows that our benchmark algorithm is valuable when the measurement noise is large.

다 개체 로봇의 위치인식을 위한 비컨 컬러 코드 스케줄링 (Beacon Color Code Scheduling for the Localization of Multiple Robots)

  • 박재현;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제16권5호
    • /
    • pp.433-439
    • /
    • 2010
  • This paper proposes a beacon color code scheduling algorithm for the localization of multiple robots in a multi-block workspace. With the developments of intelligent robotics and ubiquitous technology, service robots are applicable for the wide area such as airports and train stations where multiple indoor GPS systems are required for the localization of the mobile robots. Indoor localization schemes using ultrasonic sensors have been widely studied due to its cheap price and high accuracy. However, ultrasonic sensors have some shortages of short transmission range and interferences with other ultrasonic signals. In order to use multiple robots in wide workspace concurrently, it is necessary to resolve the interference problem among the multiple robots in the localization process. This paper proposes an indoor localization system for concurrent multiple robots localization in a wide service area which is divided into multi-block for the reliable sensor operation. The beacon color code scheduling algorithm is developed to avoid the signal interferences and to achieve efficient localization with high accuracy and short sampling time. The performance of the proposed localization system is verified through the simulations and the real experiments.

Four Anchor Sensor Nodes Based Localization Algorithm over Three-Dimensional Space

  • Seo, Hwajeong;Kim, Howon
    • Journal of information and communication convergence engineering
    • /
    • 제10권4호
    • /
    • pp.349-358
    • /
    • 2012
  • Over a wireless sensor network (WSN), accurate localization of sensor nodes is an important factor in enhancing the association between location information and sensory data. There are many research works on the development of a localization algorithm over three-dimensional (3D) space. Recently, the complexity-reduced 3D trilateration localization approach (COLA), simplifying the 3D computational overhead to 2D trilateration, was proposed. The method provides proper accuracy of location, but it has a high computational cost. Considering practical applications over resource constrained devices, it is necessary to strike a balance between accuracy and computational cost. In this paper, we present a novel 3D localization method based on the received signal strength indicator (RSSI) values of four anchor nodes, which are deployed in the initial setup process. This method provides accurate location estimation results with a reduced computational cost and a smaller number of anchor nodes.

실내 환경에서 측위 정확도 향상을 위한 기준 AP 선택 기법 (A Selection Method of Reference Access Points to Improve the Localization Accuracy in Indoor Environments)

  • 임유진;박재성
    • 한국정보과학회논문지:정보통신
    • /
    • 제37권6호
    • /
    • pp.489-493
    • /
    • 2010
  • 래터레이션 기반 실내 위치 측위 기법은 단말기와 AP(Anchor Point) 사이의 거리 예측을 위하여 RSS(Received Signal Strength)를 주로 사용한다. 그러나 무선 신호는 시간과 공간에 따라 무작위로 변화하는 특성을 가지므로 RSS를 이용한 거리 예측에서 오류의 발생은 불가피하다. 단말기와 AP사이의 거리 예측 정확도는 단말기 위치 예측 정확도에 많은 영향을 미치게 되므로 기존 기법들은 이를 해결하기 위하여 다수의 AP를 사용하였다. 그러나 많은 실험 결과들은 다수의 AP 사용보다는 경로 손실 모델에 잘 부합하는 RSS 측정 값을 가진 AP 즉 기준 AP 만을 선택하여 이용하는 것이 위치 예측 정확도를 향상시킬 수 있는 방법임을 보였다. 따라서 본 논문에서는 실내 환경에서 단말기의 측위 정확도활 향상시키기 위한 기준 AP 선택 기법과 선택된 기준 AP들을 이용한 적응적 거리 예측 기법을 제안한다. 또한 실내 위치 측위 시스템을 구현하여 다양한 실험 환경에서의 실험함으로써 제안 기법의 타당성을 검증하였다.

Efficient Kernel Based 3-D Source Localization via Tensor Completion

  • Lu, Shan;Zhang, Jun;Ma, Xianmin;Kan, Changju
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권1호
    • /
    • pp.206-221
    • /
    • 2019
  • Source localization in three-dimensional (3-D) wireless sensor networks (WSNs) is becoming a major research focus. Due to the complicated air-ground environments in 3-D positioning, many of the traditional localization methods, such as received signal strength (RSS) may have relatively poor accuracy performance. Benefit from prior learning mechanisms, fingerprinting-based localization methods are less sensitive to complex conditions and can provide relatively accurate localization performance. However, fingerprinting-based methods require training data at each grid point for constructing the fingerprint database, the overhead of which is very high, particularly for 3-D localization. Also, some of measured data may be unavailable due to the interference of a complicated environment. In this paper, we propose an efficient kernel based 3-D localization algorithm via tensor completion. We first exploit the spatial correlation of the RSS data and demonstrate the low rank property of the RSS data matrix. Based on this, a new training scheme is proposed that uses tensor completion to recover the missing data of the fingerprint database. Finally, we propose a kernel based learning technique in the matching phase to improve the sensitivity and accuracy in the final source position estimation. Simulation results show that our new method can effectively eliminate the impairment caused by incomplete sensing data to improve the localization performance.