• Title/Summary/Keyword: Localization System

Search Result 1,423, Processing Time 0.027 seconds

Probabilistic Anatomical Labeling of Brain Structures Using Statistical Probabilistic Anatomical Maps (확률 뇌 지도를 이용한 뇌 영역의 위치 정보 추출)

  • Kim, Jin-Su;Lee, Dong-Soo;Lee, Byung-Il;Lee, Jae-Sung;Shin, Hee-Won;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.6
    • /
    • pp.317-324
    • /
    • 2002
  • Purpose: The use of statistical parametric mapping (SPM) program has increased for the analysis of brain PET and SPECT images. Montreal Neurological Institute (MNI) coordinate is used in SPM program as a standard anatomical framework. While the most researchers look up Talairach atlas to report the localization of the activations detected in SPM program, there is significant disparity between MNI templates and Talairach atlas. That disparity between Talairach and MNI coordinates makes the interpretation of SPM result time consuming, subjective and inaccurate. The purpose of this study was to develop a program to provide objective anatomical information of each x-y-z position in ICBM coordinate. Materials and Methods: Program was designed to provide the anatomical information for the given x-y-z position in MNI coordinate based on the Statistical Probabilistic Anatomical Map (SPAM) images of ICBM. When x-y-z position was given to the program, names of the anatomical structures with non-zero probability and the probabilities that the given position belongs to the structures were tabulated. The program was coded using IDL and JAVA language for 4he easy transplantation to any operating system or platform. Utility of this program was shown by comparing the results of this program to those of SPM program. Preliminary validation study was peformed by applying this program to the analysis of PET brain activation study of human memory in which the anatomical information on the activated areas are previously known. Results: Real time retrieval of probabilistic information with 1 mm spatial resolution was archived using the programs. Validation study showed the relevance of this program: probability that the activated area for memory belonged to hippocampal formation was more than 80%. Conclusion: These programs will be useful for the result interpretation of the image analysis peformed on MNI coordinate, as done in SPM program.

Optimal Operation of Gas Engine for Biogas Plant in Sewage Treatment Plant (하수처리장 바이오가스 플랜트의 가스엔진 최적 운영 방안)

  • Kim, Gill Jung;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.28 no.2
    • /
    • pp.18-35
    • /
    • 2019
  • The Korea District Heating Corporation operates a gas engine generator with a capacity of $4500m^3 /day$ of biogas generated from the sewage treatment plant of the Nanji Water Recycling Center and 1,500 kW. However, the actual operation experience of the biogas power plant is insufficient, and due to lack of accumulated technology and know-how, frequent breakdown and stoppage of the gas engine causes a lot of economic loss. Therefore, it is necessary to prepare technical fundamental measures for stable operation of the power plant In this study, a series of process problems of the gas engine plant using the biogas generated in the sewage treatment plant of the Nanji Water Recovery Center were identified and the optimization of the actual operation was made by minimizing the problems in each step. In order to purify the gas, which is the main cause of the failure stop, the conditions for establishing the quality standard of the adsorption capacity of the activated carbon were established through the analysis of the components and the adsorption test for the active carbon being used at present. In addition, the system was applied to actual operation by applying standards for replacement cycle of activated carbon to minimize impurities, strengthening measurement period of hydrogen sulfide, localization of activated carbon, and strengthening and improving the operation standards of the plant. As a result, the operating performance of gas engine # 1 was increased by 530% and the operation of the second engine was increased by 250%. In addition, improvement of vent line equipment has reduced work process and increased normal operation time and operation rate. In terms of economic efficiency, it also showed a sales increase of KRW 77,000 / year. By applying the strengthening and improvement measures of operating standards, it is possible to reduce the stoppage of the biogas plant, increase the utilization rate, It is judged to be an operational plan.

[ $^1H$ ] MR Spectroscopy of the Normal Human Brains: Comparison between Signa and Echospeed 1.5 T System (정상 뇌의 수소 자기공명분광 소견: 1.5 T Signa와 Echospeed 자기공명영상기기에서의 비교)

  • Kang Young Hye;Lee Yoon Mi;Park Sun Won;Suh Chang Hae;Lim Myung Kwan
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.2
    • /
    • pp.79-85
    • /
    • 2004
  • Purpose : To evaluate the usefulness and reproducibility of $^1H$ MRS in different 1.5 T MR machines with different coils to compare the SNR, scan time and the spectral patterns in different brain regions in normal volunteers. Materials and Methods : Localized $^1H$ MR spectroscopy ($^1H$ MRS) was performed in a total of 10 normal volunteers (age; 20-45 years) with spectral parameters adjusted by the autoprescan routine (PROBE package). In all volunteers, MRS was performed in a three times using conventional MRS (Signa Horizon) with 1 channel coil and upgraded MRS (Echospeed plus with EXCITE) with both 1 channel and 8 channel coil. Using these three different machines and coils, SNRs of the spectra in both phantom and volunteers and (pre)scan time of MRS were compared. Two regions of the human brain (basal ganglia and deep white matter) were examined and relative metabolite ratios (NAA/Cr, Cho/Cr, and mI/Cr ratios) were measured in all volunteers. For all spectra, a STEAM localization sequence with three-pulse CHESS $H_2O$ suppression was used, with the following acquisition parameters: TR=3.0/2.0 sec, TE=30 msec, TM=13.7 msec, SW=2500 Hz, SI=2048 pts, AVG : 64/128, and NEX=2/8 (Signa/Echospeed). Results : The SNR was about over $30\%$ higher in Echospeed machine and time for prescan and scan was almost same in different machines and coils. Reliable spectra were obtained on both MRS systems and there were no significant differences in spectral patterns and relative metabolite ratios in two brain regions (p>0.05). Conclusion : Both conventional and new MRI systems are highly reliable and reproducible for $^1H$ MR spectroscopic examinations in human brains and there are no significant differences in applications for $^1H$ MRS between two different MRI systems.

  • PDF