• Title/Summary/Keyword: Local wind field

Search Result 143, Processing Time 0.026 seconds

Experimental Investigation on the Effect of Low-Speed Icing Condition to the Surface Roughness Formation (저속 결빙조건이 표면 조도 형성에 미치는 영향에 관한 실험적 연구)

  • Kang, Yu-Eop;Min, Seungin;Kim, Taeseong;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.99-108
    • /
    • 2020
  • In the field of aircraft icing prediction, surface roughness has been considered as critical factor because it enhances convective heat transfer and changes local collection efficiency. For this significance, experimental studies have been conducted to acquire the quantitative data of the formation process. Meanwhile, these experiments was conducted under low-speed condition due to the measurement difficulties. However, it has not been investigated that how the flow characteristic of low-speed will effects to the surface roughness. Therefore, the present study conducted experiment under low-speed icing condition, and analyzed the relation between surface roughness characteristics and icing condition. As an analysis method, the dominant parameters used in the previous high-speed experiments are employed, and roughness characteristics are compared. The size of roughness element was consistent with the previous known tendency, but not the smooth zone width.

The Experimental Study of the Interaction Between the Flow rind Temperature Field and a Boundary Layer Due to a Variety of tole Height of a Vortex Generator (와동 발생기 높이 변화에 대한 경계층 내의 유동장과 온도장에 관한 실험적 연구)

  • Gwon, Su-In;Yang, Jang-Sik;Lee, Gi-Baek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.82-93
    • /
    • 2002
  • The effects of the interaction between the flow and temperature field and a boundary layer due to a variety of the height of a vortex generator are experimentally investigated. The test facility consists of a boundary-layer wind tunnel with the vortex generator protruding from the bottom surface. In order to control the strength of the longitudinal vortices, the angle of attack and the spacing distance of the vortex generator are 20 degree and 40 mm, respectively. The height of the vortex generator (H) is 15 mm, 20 mm and 30 mm and the cord length of it is 50 mm. Three-component mean velocity measurements are made using a 5-hole probe system and the surface temperature distribution is measured by the hue capturing method using thermochromatic liquid crystals. By using the method mentioned above, the following conclusions are obtained from the present experiment. The boundary layer is thinned in the downwash region where the strong downflow and the lateral outflow of the boundary layer fluid occur and thickened in the upwash re,3ion where the longitudinal vortex sweeps low momentum fluid away from the bottom surface. In case that the height of the vortex generator increases, the averaged circulation and the maximum vorticity of the vortex pair decrease. The contours of the non-dimensional temperature show the similar trends fur all the cases (H=15 mm, 20 mm and 30 mm). The peak augmentation of the distribution of the local non-dimensional temperature occurs in the downwash region near the point of minimum boundary-layer thickness.

Evaluation of Short-Term Prediction Skill of East Asian Summer Atmospheric Rivers (동아시아 여름철 대기의 강 단기 예측성 검증)

  • Hyein Kim;Yeeun Kwon;Seung-Yoon Back;Jaeyoung Hwang;Seok-Woo Son;HyangSuk Park;Eun-Jeong Cha
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.83-95
    • /
    • 2024
  • Atmospheric rivers (ARs) are closely related to local precipitation which can be both beneficial and destructive. Although several studies have evaluated their predictability, there is a lack of studies on East Asian ARs. This study evaluates the prediction skill of East Asian ARs in the Korean Integrated Model (KIM) for 2020~2022 summer. The spatial distribution of AR frequency in KIM is qualitatively similar to the observation but overestimated. In particular, the model errors greatly increase along the boundary of the western North Pacific subtropical high as the forecast lead time increases. When the prediction skills are quantitatively verified by computing the Anomaly Correlation Coefficient and Mean Square Skill Score, the useful prediction skill of daily AR around the Korean Peninsula is found up to 5 days. Such prediction limit is primarily set by the wind field errors with a minor contribution of moisture distribution errors. This result suggests that the improved prediction of atmospheric circulation field can improve the prediction of East Asian summer ARs and the associated precipitation.

Temporal and Spatial Characteristics of Surface Winds over the Adjacent Seas of the Korean Peninsula (한국 주변해역에서의 해상풍의 시공간적 특성)

  • Han, Sang-Kyu;Lee, Heung-Jae;Na, Jung-Yul
    • 한국해양학회지
    • /
    • v.30 no.6
    • /
    • pp.550-564
    • /
    • 1995
  • The temporal and spatial characteristics of wind fields over the neighbouring seas of the Korean peninsula are investigated using 10-years daily wind data during 1978${\sim}$1987 which have been spatially smoothed and low-pass filtered. Long term annual and monthly means are examined for synoptic patterns and spectral analyses are made for temporal variability and spatial coherence. Spatial patterns of the annual mean wind stress and curl have a strong resemblance with those of monthly means during the winter season. Two outstanding periodicities are observed at 1 and 2 cycles per year. The synoptic winds over the study area are highly coherent at both the annual and semi-annual periodicities. However, each basin has its own characteristic spatial pattern. For instance, the prevailing wind during the winter season is northerIy over the northern East Sea (ES), Yellow Sea (YS), and northern East China Sea (ECS), while it is northwesterly over the southern ES and northesterly over the northern ES and southern ECS. At the same time, the wind stress curl is positive over the northern ES and southern ECS, while it is negative over the southern ES, YS and northern ECS. On the other hand, the wind field during the summer season, with its strength being much reduced, is completely different from that during the winter season, and frequent passage of tropical storms provokes large temporal variability over ECS. One remarkable point is that the annual cycle, dominated by the Siberian High, tends to propagate from northeast to southwest, i.e., from northern 25 toward southern ES, YS and ECS, while the semi-annual cycle propagates in the opposite direction, from southwest to northeast. The semi-annual periodicity may reflect development of extratropical cyclones in spring and fall which frequently cross the Korean peninsula. In higher frequencies, there are no dominant periodicities, but local winds over YS and ES are highly correlated for frequencies larger than 0.1 cycles per day and phase difference increases linearly with frequency. This linear increase of phase corresponds to phase speed of 550 and 730 km/d at 0.1 and 0.3 cpd, respectively, The phase speed is apparently coincident with moving speed of extratropical cyclones across the Korean peninsula in the west-east direction.

  • PDF

Analysis of Spatial Water Quality Variation in Daechung Reservoir (대청호 수리-수질의 공간적 변동 특성 분석)

  • Lee, Heung Soo;Chung, Se Woong;Choi, Jung Kyu;Oh, Dong Geun;Heo, Tae Young
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.699-709
    • /
    • 2011
  • The uses of multi-dimensional hydrodynamic and water quality models are increasing to support a sustainable management of large dam reservoirs in Korea. Any modeling study requires selection of a proper spatial dimension of the model based on the characteristics of spatial variability of concerned simulation variables. For example, a laterally averaged two-dimensional (2D) model, which has been widely used in many large dam reservoirs in Korea, assumes that the lateral variations of hydrodynamic and water quality variables are negligible. However, there has been limited studies to give a justification of the assumption. The objectives of this study were to present the characteristics of spatial variations of water quality variables through intensive field monitoring in Daechung Reservoir, and provide information on a proper spatial dimension for different water quality parameters. The monitoring results showed that the lateral variations of water temperature are marginal, but those of DO, pH, and conductivity could be significant depending on the hydrological conditions and local algal biomass. In particular, the phytoplankton (Chl-a) and nutrient concentrations showed a significant lateral variation at R2 (Daejeongri) during low flow periods in 2008 possibly because of slow lateral mixing of tributary inflow from So-oak Stream and wind driven patchiness.

A Study for the Establishment of the Diagnostic Definition of Sanhupung (U32.7) using the Delphi Method (산후풍의 진단적 정의 확립을 위한 전문가 델파이 조사 연구)

  • Oh, Su-Kyoung;Noh, Eun-Ji;Choi, Su-Ji;Kim, Dong-Il
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.34 no.2
    • /
    • pp.16-30
    • /
    • 2021
  • Objectives: The aim of this study was to establish a clear diagnostic definition of Sanhupung using the Delphi method. Methods: This study used the Delphi technique. A panel consisting of 21 experts of Korean medicine, particularly in of gynecologic medicine, participated in the Delphi examination that included answering the 4th round survey. The Delphi examination was carried out through evaluating and correcting the questionnaire by e-mail. Results: Through the Delphi survey, we have reached on an agreement regarding the basic concepts, time, cause, essential symptoms, and accessory symptoms of Sanhupung. They are as follows: 1) Sanhupung is a culture bound syndrome reflecting Korea's cultural specificity. 2) Sanhupung can be diagnosed even after the miscarriage. 3) For the diagnosis of Sanhupung, the main cause of symptoms should not be classified as other disease. 4) Sanhupung can be diagnosed based on essential symptoms and accessory symptoms. 5) Essential symptoms include local symptoms such as joint pain at specific areas, partial sensory impairment and general symptoms including pain of all the joints, whole body sensory impairment, increased sweating, feeling of wind coming into the body, worsened symptoms with the cold, intolerance to cold, and pain of all the muscles. Conclusions: The basic concepts and diagnostic definition of Sanhupung were suggested based on the Delphi survey among experts in the field. Further research is necessary to improve reliability and validity of diagnostic definition of Sanhupung in clinical trials.

The Social-Spatial Relationship between Jeongeup Julpungryu and Daepungryu (정읍 줄풍류와 대풍류의 사회적·공간적 연관성)

  • Cho, Seog-Yeon
    • (The) Research of the performance art and culture
    • /
    • no.39
    • /
    • pp.775-800
    • /
    • 2019
  • Jeongeup Pungnyu, which can be regarded as a foundation of Hyangje Julpungryu(;string ensemble in Honam Area) best reflects social-spatial characteristics of local Pungryu culture. The close relationship between Daepungryu(wind ensemble) and Julpungryu can be inferred from three points of view. First, Jeongeumun who participated as a musician in the beginning of Hyangje Julpungryu was good at not only performing musical instrument but also dancing. Jeongeumun did not stay in specific musical field. He performed Hyangje Julpungryu, made Daepungryu and used it as dancing music with musicians that participated in Julpungryu. That is why Julpungryu and Daepungryu are not completely separated music. Secondly, according to , Jung Hyungin, who followed the dance of Jeong Jae-Sun with Kim So-Ran, was the first Piri player who learned from Jeongeumun and played Yeongsanhoesang and Samhyeon-yukkak(;wind ensemble). That is, Jeongeup Julpungryu was formed by Jeongeumun and dancer Jung Hyung-in followed Julpungryu and Daepungryu. Based on these findings, it can be inferred that Jeongeup's Daepungryu is fundamentally closely related to Jungeup Julpungryu.

Towards high-accuracy data modelling, uncertainty quantification and correlation analysis for SHM measurements during typhoon events using an improved most likely heteroscedastic Gaussian process

  • Qi-Ang Wang;Hao-Bo Wang;Zhan-Guo Ma;Yi-Qing Ni;Zhi-Jun Liu;Jian Jiang;Rui Sun;Hao-Wei Zhu
    • Smart Structures and Systems
    • /
    • v.32 no.4
    • /
    • pp.267-279
    • /
    • 2023
  • Data modelling and interpretation for structural health monitoring (SHM) field data are critical for evaluating structural performance and quantifying the vulnerability of infrastructure systems. In order to improve the data modelling accuracy, and extend the application range from data regression analysis to out-of-sample forecasting analysis, an improved most likely heteroscedastic Gaussian process (iMLHGP) methodology is proposed in this study by the incorporation of the outof-sample forecasting algorithm. The proposed iMLHGP method overcomes this limitation of constant variance of Gaussian process (GP), and can be used for estimating non-stationary typhoon-induced response statistics with high volatility. The first attempt at performing data regression and forecasting analysis on structural responses using the proposed iMLHGP method has been presented by applying it to real-world filed SHM data from an instrumented cable-stay bridge during typhoon events. Uncertainty quantification and correlation analysis were also carried out to investigate the influence of typhoons on bridge strain data. Results show that the iMLHGP method has high accuracy in both regression and out-of-sample forecasting. The iMLHGP framework takes both data heteroscedasticity and accurate analytical processing of noise variance (replace with a point estimation on the most likely value) into account to avoid the intensive computational effort. According to uncertainty quantification and correlation analysis results, the uncertainties of strain measurements are affected by both traffic and wind speed. The overall change of bridge strain is affected by temperature, and the local fluctuation is greatly affected by wind speed in typhoon conditions.

Opening New Horizons with the L4 Mission: Vision and Plan

  • Kyung-Suk Cho;Junga Hwang;Jeong-Yeol Han;Seong-Hwan Choi;Sung-Hong Park;Eun-Kyung Lim;Rok-Soon Kim;Jungjoon Seough;Jong-Dae Sohn;Donguk Song;Jae-Young Kwak;Yukinaga Miyashita;Ji-Hye Baek;Jaejin Lee;Jinsung Lee;Kwangsun Ryu;Jongho Seon;Ho Jin;Sung-Jun Ye;Yong-Jae, Moon;Dae-Young Lee;Peter H. Yoon;Thiem Hoang;Veerle Sterken;Bhuwan Joshi;Chang-Han Lee;Jongjin Jang;Jae-Hwee Doh;Hwayeong Kim;Hyeon-Jeong Park;Natchimuthuk Gopalswamy;Talaat Elsayed;John Lee
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.263-275
    • /
    • 2023
  • The Sun-Earth Lagrange point L4 is considered as one of the unique places where the solar activity and heliospheric environment can be observed in a continuous and comprehensive manner. The L4 mission affords a clear and wide-angle view of the Sun-Earth line for the study of the Sun-Earth and Sun-Moon connections from he perspective of remote-sensing observations. In-situ measurements of the solar radiation, solar wind, and heliospheric magnetic field are critical components necessary for monitoring and forecasting the radiation environment as it relates to the issue of safe human exploration of the Moon and Mars. A dust detector on the ram side of the spacecraft allows for an unprecedented detection of local dust and its interactions with the heliosphere. The purpose of the present paper is to emphasize the importance of L4 observations as well as to outline a strategy for the planned L4 mission with remote and in-situ payloads onboard a Korean spacecraft. It is expected that the Korean L4 mission can significantly contribute to improving the space weather forecasting capability by enhancing the understanding of heliosphere through comprehensive and coordinated observations of the heliosphere at multi-points with other existing or planned L1 and L5 missions.

LONGITUDINAL AND SEASONAL VARIATIONS OF THE ELECTRON TEMPERATURE AND DENSITY IN THE LOW_LATITUDE TOPSIDE IONOSPHERE OBSERVED BY KOMPSAT-1 (다목적 실용위성 1호로 측정한 저위도 상부 이온층의 전자 온도와 전자 밀도의 경도 및 계절별 변화)

  • Kim, Hee-jun;Park, Sun-Mie;Lee, Jae-Jin;Lee, En-sang;Min, Kyoung-Wook;Han, Won-yong;Nam, Uk-Won;Jin, Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.2
    • /
    • pp.123-132
    • /
    • 2002
  • The electron density and temperature in the topside ionosphere are observed by the ionosphere Measurement Sensor (IMS) onboard the KOMPSAT-1, which has the sun-synchronous orbit of the altitude of 685 km and the orbital inclination of $98^{\circ}$ with a descending node at 22:50LT. Observations have been analyzed to determine the seasonal variations of the electron density and temperature in the low-latitude region. Only the night-time (22:50LT) behavior on magnetically quiet days (Kp < 4) has been examined. Observations show a strong longitudinal and seasonal variation. Generally, in the dip equator the density increases and the temperature decreases. In equinox the latitudinal distributions of the electron density and temperature are quite symmetric about the dip equator. However, the local maximum of the density and the local minimum of the temperature shift toward the Northern hemisphere in summer solstice but the Southern hemisphere in winter solstice. Such variations are due to the influences of field-aligned plasma transport induced by F region neutral wind. Compared with the IRI95 model, the observed electron density and temperature show significant differences from those predicted by the IRI95 model.