• Title/Summary/Keyword: Local temperature distribution

Search Result 328, Processing Time 0.025 seconds

A Study on the Heat Release Analysis to Compensate the Error due to Assumption of Single Zone in Diesel Engine (디젤 기관 단일 영역 모델 열발생율 계산의 오차 보상에 관한 연구)

  • Ryu Seung-Hyup;Kim Ki-Doo;Yoon Wook-Hyeon;Ha Ji-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.572-579
    • /
    • 2006
  • Accurate heat release analysis based on the cylinder pressure trace is important for evaluating combustion process of diesel engines. However, traditional single-zone heat release models (SZM) have significant limitations due mainly to their simplified assumptions of uniform charge and homogeneity while neglecting local temperature distribution inside cylinder during combustion process. In this study, a heat release analysis based on single-zone model has been evaluated by comparison with computational simulation result using Fire-code, which is based on multidimensional model (MDM). The limitations of the single-zone assumption have been estimated, To overcome these limitations, an improved model that includes the effects of spatial non-uniformity has been applied. From this improved single-zone heat release model (Improved-SZM), two effective values of specific heat ratios, denoted by ${\gamma}_V$ and ${\gamma}_H$ in this study, have been introduced. These values are formulated as the function of charge temperature changing rate and overall equivalence ratio. Also, it is applied that each equation of ${\gamma}_V$ and ${\gamma}_H$ has respectively different slopes according to several meaningful periods during combustion progress. The heat release analysis results based on improved single-zone model gives a good agreement with FIRE-code results over the whole range of operating conditions of target engine, Hyundai HiMSEN H21/32.

Natural Convection Heat Transfer Past an Outer Rectangular Corner (외부 직각모서리 부근에서의 자연대류 열전달)

  • 신순철;장근식;김승수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.598-605
    • /
    • 1985
  • Laminar natural convection heat transfer past an outer rectangular corner was experimentally investigated by using Mach-Zehnder interferometer. The present geometry represents the case when the plume from a vertical flat plate and that from a horizontal one merge into a single plume. the temperature distribution and the local heat flux were measured in the range of Grashof number 8 * 10$^{4}$$r_{LH}$ <1.25 * 10$^{6}$ . The effect of the geometric aspect ratio was also considered. Correlation for the average Nusselt number vs. Grashof number was obtained by using a newly determined characteristic length. To determine the interaction of the plumes, the present results were compared with the similarity solutions available from the isolated vertical and isolated horizontal flat plates.

Downscaling of Land Surface Temperature by Combining Communication, Ocean and Meteorological Satellite (천리안 위성의 기상센서와 해양센서를 활용한 지표면 온도 상세화 기법)

  • Jeong, Jaehwan;Baik, Jongjin;Choi, Minha
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.122-131
    • /
    • 2017
  • Remotely sensed satellite data is easier to collect and better to represent local phenomenon than a site data. So they can contribute to the activation and development of many research. However, it is necessary to improve spatial resolution suitable for application in the area of complex topography such as the Korean Peninsula. In this study, finer resolution Land Surface Temperature (LST) was downscaled from 4 km to 500 m by combining GOCI with MI data of Communication, Ocean and Meteorological Satellite (COMS). It was then statistically analyzed with LST data observed from the ASOS sites to validate its applicability. As a result, it was found that the errors decreased and correlation increased at the most validation sites, also the spatial distribution analysis showed a similar tendency but it expressed the complicated terrain better. This study suggests possibility of expanding the application range of COMS by producing finer resolution data available in various studies.

The Effect of Nozzle Collar on Single Phase and Boiling Heat Transfer by Planar Impinging Jet (평면 충돌제트에서 노즐 깃이 단상 및 비등 열전달에 미치는 영향)

  • Shin Chang Hwan;Yim Seong Hwan;Wu Seong Je;Cho Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.878-885
    • /
    • 2005
  • The water jet impingement cooling is one of the techniques to remove the heat from high heat flux equipments. Local heat transfer of the confined water impinging jet and the effect of nozzle collar to enhance the heat transfer are investigated in the fee surface jet and submerged jet. Boiling is initiated from the farthest downstream and increase of the wall temperature is reduced with developing boiling, forming the flat temperature distributions. The reduction in the nozzle-to-surface distance fur H/W$\le$1 causes significant increases and distribution changes of heat transfer. Developed boiling reduces the differences of heat transfer for various conditions. The nozzle collar is employed at the nozzle exit. The distances from heated surface to nozzle collar, Hc are 0.25W, 0.5W and 1.0W. The liquid film thickness is reduced and the velocity of wall jet increases as decreased spacing of collar to heated surface. Heat transfer is enhanced fur region from the stagnation to x/W$\~$8 in the free surface jet and to x/W$\~$5 in the submerged jet. For nucleate boiling region of further downstream, the heat transfer by the nozzle collar is decreased in submerged jet comparing with higher velocity condition. It is because the increased velocity by collar is de-accelerated downstream.

Development of Solar-Meteorological Resources Map using One-layer Solar Radiation Model Based on Satellites Data on Korean Peninsula (위성자료 기반의 단층태양복사모델을 이용한 한반도 태양-기상자원지도 개발)

  • Jee, Joonbum;Choi, Youngjean;Lee, Kyutae;Zo, Ilsung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.56.1-56.1
    • /
    • 2011
  • The solar and meteorological resources map is calculated using by one-layer solar radiation model (GWNU model), satellites data and numerical model output on the Korean peninsula. The Meteorological input data to perform the GWNU model are retrieved aerosol optical thickness from MODIS (TERA/AQUA), total ozone amount from OMI (AURA), cloud fraction from geostationary satellites (MTSAT-1R) and temperature, pressure and total precipitable water from output of RDAPS (Regional Data Assimilation and Prediction System) and KLAPS (Korea Local Analysis and Prediction System) model operated by KMA (Korea Meteorological Administration). The model is carried out every hour using by the meteorological data (total ozone amount, aerosol optical thickness, temperature, pressure and cloud amount) and the basic data (surface albedo and DEM). And the result is analyzed the distribution in time and space and validated with 22 meteorological solar observations. The solar resources map is used to the solar energy-related industries and assessment of the potential resources for solar plant. The National Institute of Meteorological Research in KMA released $4km{\times}4km$ solar map in 2008 and updated solar map with $1km{\times}1km$ resolution and topological effect in 2010. The meteorological resources map homepage (http://www.greenmap.go.kr) is provided the various information and result for the meteorological-solar resources map.

  • PDF

The Effect of Nozzle Collar on Single Phase and Boiling Heat Transfer by Planar Impinging Jet (평면 충돌제트에서 노즐 깃이 단상 및 비등 열전달에 미치는 영향)

  • Shin, Chang-Hwan;Yim, Seong-Hwan;Wu, Seong-Je;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1452-1457
    • /
    • 2004
  • The water jet impingement cooling is one of the techniques to remove heat from high heat flux equipments. We investigate the local heat transfer of the confined water impinging jet and the effect of nozzle collar to enhance the heat transfer in the free surface jet and submerged jet. Boiling is initiated from the furthest downstream and the wall temperature increase is reduced with developing boiling, forming the flat temperature distributions. The reduction in the nozzle-to-surface distance for $H/W{\leq}1$ causes the significant increases and distribution changes in heat transfer. Developed boiling reduces the differences in heat transfer for various conditions. The nozzle collar is employed at the nozzle exit. The distances from heated surface to guide plate, $H_c$ are 0.25W, 0.5W and 1.0W. The liquid film thickness is reduced and the velocity of wall jet increase as decreased spacing of collar to heated surface. Heat transfer is enhanced for region from the stagnation to $x/W{\sim}8$ in the free surface jet and to $x/W{\sim}5$ in the submerged jet. For nucleate boiling region of further downstream, the heat transfer by the nozzle collar is decreased in submerged jet compare with higher velocity condition. It is because the increased velocity by collar is de-accelerated at downstream.

  • PDF

NATURAL CONVECTION HEAT TRANSFER CHARACTERISTICS IN A CANISTER WITH HORIZONTAL INSTALLATION OF DUAL PURPOSE CASK FOR SPENT NUCLEAR FUEL

  • Lee, Dong-Gyu;Park, Jea-Ho;Lee, Yong-Hoon;Baeg, Chang-Yeal;Kim, Hyung-Jin
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.969-978
    • /
    • 2013
  • A full-sized model for the horizontally oriented metal cask containing 21 spent fuel assemblies has been considered to evaluate the internal natural convection behavior within a dry shield canister (DSC) filled with helium as a working fluid. A variety of two-dimensional CFD numerical investigations using a turbulent model have been performed to evaluate the heat transfer characteristics and the velocity distribution of natural convection inside the canister. The present numerical solutions for a range of Rayleigh number values ($3{\times}10^6{\sim}3{\times}10^7$) and a working fluid of air are further validated by comparing with the experimental data from previous work, and they agreed well with the experimental results. The predicted temperature field has indicated that the peak temperature is located in the second basket from the top along the vertical center line by effects of the natural convection. As the Rayleigh number increases, the convective heat transfer is dominant and the heat transfer due to the local circulation becomes stronger. The heat transfer characteristics show that the Nusselt numbers corresponding to $1.5{\times}10^6$ < Ra < $1.0{\times}10^7$ are proportional to 0.5 power of the Rayleigh number, while the Nusselt numbers for $1.0{\times}10^7$ < Ra < $8.0{\times}10^7$ are proportional to 0.27 power of the Rayleigh number. These results agreed well with the trends of the experimental data for Ra > $1.0{\times}10^7$.

Heating Performance Prediction of Low-depth Modular Ground Heat Exchanger based on Artificial Neural Network Model (인공신경망 모델을 활용한 저심도 모듈러 지중열교환기의 난방성능 예측에 관한 연구)

  • Oh, Jinhwan;Cho, Jeong-Heum;Bae, Sangmu;Chae, Hobyung;Nam, Yujin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.3
    • /
    • pp.1-6
    • /
    • 2022
  • Ground source heat pump (GSHP) system is highly efficient and environment-friendly and supplies heating, cooling and hot water to buildings. For an optimal design of the GSHP system, the ground thermal properties should be determined to estimate the heat exchange rate between ground and borehole heat exchangers (BHE) and the system performance during long-term operating periods. However, the process increases the initial cost and construction period, which causes the system to be hindered in distribution. On the other hand, much research has been applied to the artificial neural network (ANN) to solve problems based on data efficiently and stably. This research proposes the predictive performance model utilizing ANN considering local characteristics and weather data for the predictive performance model. The ANN model predicts the entering water temperature (EWT) from the GHEs to the heat pump for the modular GHEs, which were developed to reduce the cost and spatial disadvantages of the vertical-type GHEs. As a result, the temperature error between the data and predicted results was 3.52%. The proposed approach was validated to predict the system performance and EWT of the GSHP system.

Study on the fire resistance of castellated composite beams with ortho-hexagonal holes and different beam-end constraints

  • Junli Lyu;Encong Zhu;Rukai Li;Bai Sun;Zili Wang
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.539-551
    • /
    • 2023
  • In order to study the fire resistance of castellated composite beams with ortho-hexagonal holes and different beam-end restraints, temperature rise tests with constant load were conducted on full-scale castellated composite beams with ortho-hexagonal holes and hinge or rigid joint constraints to investigate the temperature distribution, displacement changes and failure patterns of castellated composite beams with two different beam-end constraints during the whole course of fire. The results show that (1) During the fire, the axial pressure and horizontal expansion deformation generated in the rigid joint constrained composite beam were larger than those in the hinge joint constrained castellated composite beam, and their maximum horizontal expansion displacements were 30.2 mm and 17.8 mm, respectively. (2) After the fire, the cracks on the slab surface of the castellated composite beam with rigid joint constraint were more complicated than hinge restraint, and the failure more serious; the lower flange and web at the ends of the castellated steal beams with hinge and rigid joint constraint produced serious local buckling, and the angles of the ortho-hexagonal holes at the support cracked; the welds at both ends of the castellated composite beam with rigid joint constraint cracked. (3) Based on the simplified calculation method of solid-web composite beam, considering the effect of holes on the web, this paper calculated the axial force and displacement of the beam-end constrained castellated composite beams under fire. The calculation results agreed well with the test results.

Estimation of Monthly Temperature Distribution in Cheju Island by Topoclimatological Relationships (지형(地形)-기후(氣候) 관계식(關係式)에 의한 제주도(濟州道)의 월별(月別) 기온분포(氣溫分布)의 추정(推定))

  • Shin, Man Yong;Yun, Jin Il
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.1
    • /
    • pp.40-52
    • /
    • 1992
  • The use of meteorological information is essential in the industrial society. More specialized weather services are required to perform better industrial activities including forestry. A topoclimatological technique, in this study, which makes use of empirical relationships between the topography and the weather in Cheju Island was applied to produce reasonable estimates of monthly air temperatures over remote land area where routine observations are rare. Altitude values of the 250m grid points were first read from a 1 : 25000 topographic map. The mean altitude and other valuable topographical variables were then determined for each $1km^2$ land area. Daily minimum, maximum and mean air temperature data were collected from 19 points in Cheju Island from June 1987 to September 1988. The data were analyzed and grouped into 36 sets by type of air temperature and by month. Each of data set was regressed to the topographical variables to delineate empirical relationships between the local air temperature and the site topography. The total of 36 regression equations were finally selected and the equations were used to calculate the monthly air temperature for each $1km^2$ land area. The outputs were presented in a fine-mesh grid map with a 6-level contour capability.

  • PDF