• Title/Summary/Keyword: Local storm

Search Result 92, Processing Time 0.024 seconds

Local Environments of Li in the Interlayer of Clay Minerals at Room and High Temperatures (상온 및 고온에서 점토광물 층간의 Li 환경)

  • Kim, Yeong-Kyoo;Lee, Ji-Eun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.193-201
    • /
    • 2007
  • We used $^6Li$ and $^7Li$ MAS NMR to investigate the fate and local environments of Li in the interlayer of clay minerals such as hectorite, Woming-montmorillonite, beidellite, and lepidollite at room and high ($250^{\circ}C$) temperature. Although $^6Li$ NMR spectra show narrower peaks than those of $^7Li$ NMR, S/N ratio is low and there are no obvious differences in chemical shifts suggesting that it is difficult to apply $^6Li$ NMR to have information on the local environments of Li in the clay interlayers. $^7Li$ NMR spectra, however, show changes in the peak width and quadrupole patterns providing information on the local environments of Li in the interlayer even though changes in the chemical shift are not observed. In montmorillonite, two different local environments of Li are observed; one has a narrow peak with typical quadrupole patterns whereas another has a broad peak without those of the patterns. Changes in the peak width is also observed from broad to narrow in the $^7Li$ NMR spectra for beidellite but not for hectorite at high temperature. Our results suggest that the peak width change in the broad peak is attributed to the coordination changes in the water molecules around Li which is tightly bonded on the basal oxygen of Si tetrahedra as inner-sphere complexes. The narrow peak in montmorillnoite can be assigned to the Li bended as outer-sphere complexes.

PM10 and PM2.5 Characterization based on Mass Concentration Long-term (1989 ~ 2012) Database in Yongin-Suwon Area (장기간 (1989 ~ 2012) 측정자료를 이용한 용인-수원지역에서의 PM10 및 PM2.5의 오염특성 분석 (질량농도 중심))

  • Lim, Hyoji;Lee, Tae-Jung;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.3
    • /
    • pp.209-222
    • /
    • 2015
  • Fine and coarse PM had been collected by LVCI (low volume cascade impactor) and HVAS (high volume air sampler) during January 1989 to April 2012 at Kyung Hee University, Global Campus located on the boarder of Yongin and Suwon. The database of PM mass concentration was constructed and then intensively and extensively investigated to understand monthly, seasonal, and annual patterns of each PM behavior. Especially the study separated all the PM data into the 5 Period Zones, which were classified on the basis of social, political, and environmental issues that might be influencing local ambient air quality during the monitoring period. The overall $PM_{10}$ level had been continuously decreased until 2005 and after then was staggering due to rapidly increasing $PM_{2.5}$ level in $PM_{10}$. The annual average of $PM_{2.5}$ concentration varied from $34.3{\mu}g/m^3$ to $59.0{\mu}g/m^3$, which were much higher than the 2015 ambient air quality standard. The $PM_{2.5}$ level was strongly associated with haze events, while both $PM_{10}$ and $PM_{2.5}$ levels were associated with Yellow storm events. Daily concentrations of $PM_{2.5}$ were ranged $13.1{\sim}212.9{\mu}g/m^3$ in haze days and $33.6{\sim}124.6{\mu}g/m^3$ in Asian dust days. The study also intensively investigated annual and seasonal patterns of $PM_{2.5}/PM_{10}$ ratios.

Relationship between PM2.5 Mass Concentrations and MODIS Aerosol Optical Thickness at Dukjuk and Jeju Island (제주도와 덕적도에서 관측된 초미세입자(PM2.5) 농도와 MODIS 에어러솔 광학두께와의 관계)

  • Lee, Kwon-Ho;Park, Seung-Shik
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.449-458
    • /
    • 2012
  • Using the MODerate resolution Imaging Spectro-radiometer (MODIS) retrieved aerosol optical thickness (AOT) along with ground measurements of PM2.5 mass concentration, we assessed local air quality over Dukjuk and Jeju island and estimated possibility of satellite derived PM2.5 during nine intensive observation periods in 15 October 2005 - 24 October 2007. Averaged PM2.5 mass concentrations showed relatively variable as $25.61{\pm}22.92{\mu}g/m^3$ at Dukjuk and $17.33{\pm}10.79{\mu}g/m^3$ at Jeju. The maximum values of $188.89{\mu}g/m^3$ (Dukjuk) and $50.46{\mu}g/m^3$ (Jeju) were recorded during Asian dust storm day. Similarly, the maximum values of MODIS AOT were found as 3.73 (Gosan) and 1.14 (Jeju). Averaged MODIS AOTs at Dukjuk ($0.79{\pm}0.81$) were larger than that at Jeju ($0.42{\pm}0.24$). An empirical relationship between MODIS AOT and PM2.5 mass was obtained and results show that there was a good correlation between satellite and ground based values with a linear correlation coefficient of 0.85 at Dukjuk. The result clearly demonstrates that satellite derived AOT is a good surrogate for monitoring PM air quality over study area. However, meteorological and other ancillary datasets are necessary to further apply satellite data for air quality research.

Study on development of data base system and pattern analysis of tunnel portal slope in Korea (국내 터널 갱구사면 데이터베이스관리 시스템 개발 및 상태평가 기법에 관한 연구)

  • Baek, Yong;Kwon, O-Il;Koo, Ho-Bon;Bae, Gyu-Jin;Lee, Seoung-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.3
    • /
    • pp.213-225
    • /
    • 2004
  • The number of tunnels are in fact increasing as a part of linear improvement project of general national highway and road enlargement and pavement project. Recently, collapses of portal slope are also occurring considerably, due to local raining from severe rain storm and abnormal weather. Accordingly, it was risen a necessity to efficiently respond to tunnel portal slope damage and maintenance in Korea and oversea nations. This paper is a basic proposal to execute a survey on the current status and state of the tunnel portal slopes that were already installed and are now being operated along general national highways, and also to execute state evaluation for the purpose of managing those effectively. As a research method, domestic tunnels were analyzed in accordance with geometrical shape such as access type, portal form, and tunnel type, etc. via field survey to analyze the types of tunnel portal slopes along national highways. State evaluation classification sheet is presented to divide classes for the danger state of the surveyed portal slopes, and then the related grades are divided. It is mainly aimed at classifying the tunnel portal slope along national highways with using this state evaluation, to use it as basic data so that continuous maintenance can be executed in the future in accordance with danger classes.

  • PDF

A Study on the Effect of Ground-based GPS Data Assimilation into Very-short-range Prediction Model (초단기 예측모델에서 지상 GPS 자료동화의 영향 연구)

  • Kim, Eun-Hee;Ahn, Kwang-Deuk;Lee, Hee-Choon;Ha, Jong-Chul;Lim, Eunha
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.623-637
    • /
    • 2015
  • The accurate analysis of water vapor in initial of numerical weather prediction (NWP) model is required as one of the necessary conditions for the improvement of heavy rainfall prediction and reduction of spin-up time on a very-short-range forecast. To study this effect, the impact of a ground-based Global Positioning System (GPS)-Precipitable Water Vapor (PWV) on very-short-range forecast are examined. Data assimilation experiments of GPS-PWV data from 19 sites over the Korean Peninsula were conducted with Advanced Storm-scale Analysis and Prediction System (ASAPS) based on the Korea Meteorological Administration's Korea Local Analysis and Prediction System (KLAPS) included "Hot Start" as very-short-range forecast system. The GPS total water vapor was used as constraint for integrated water vapor in a variational humidity analysis in KLAPS. Two simulations of heavy rainfall events show that the precipitation forecast have improved in terms of ETS score compared to the simulation without GPS-PWV data. In the first case, the ETS for 0.5 mm of rainfall accumulated during 3 hrs over the Seoul-Gyeonggi area shows an improvement of 0.059 for initial forecast time. In other cases, the ETS improved 0.082 for late forecast time. According to a qualitative analysis, the assimilation of GPS-PWV improved on the intensity of precipitation in the strong rain band, and reduced overestimated small amounts of precipitation on the out of rain band. In the case of heavy rainfall during the rainy season in Gyeonggi province, 8 mm accompanied by the typhoon in the case was shown to increase to 15 mm of precipitation in the southern metropolitan area. The GPS-PWV assimilation was extremely beneficial to improving the initial moisture analysis and heavy rainfall forecast within 3 hrs. The GPS-PWV data on variational data assimilation have provided more useful information to improve the predictability of precipitation for very short range forecasts.

GIS-based Urban Flood Inundation Analysis Model Considering Building Effect (건물영향을 고려한 GIS기반 도시침수해석 모형)

  • Lee, Chang-Hee;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.3
    • /
    • pp.223-236
    • /
    • 2007
  • Recently in urban area flood damages increase due to local concentrated heavy rainfall. Even in the cities where stormwater drainage systems are relatively well established flood damage still occurs because of the capacity limitations of the existing stormwater drainage systems. When the flood exceeds the capacity limitation of the urban storm sewer system, it yields huge property losses of public facilities involving roadway inundation to paralyze industrial and transportation system of the city. To prevent such flood damages in urban area, it is necessary to develop adequate inundation analysis model which can consider complicated geometry of urban area and artificial drainage system simultaneously. The Dual-Drainage model used in this study is the urban inundation analysis model which combines SWMM with DEM based 2-dimensional surface flood inundation model. In this study, the dual drainage model has been modified to consider the effect of complex buildings in urban area. Through the simulation of time variable inundation process, it is possible to identify inundation alert locations as well as to establish emergency action plan for the residencial area vulnerable to flood inundation.

TRIO (Triplet Ionospheric Observatory) CINEMA

  • Lee, Dong-Hun;Seon, Jong-Ho;Jin, Ho;Kim, Khan-Hyuk;Lee, Jae-Jin;Jeon, Sang-Min;Pak, Soo-Jong;Jang, Min-Hwan;Kim, Kap-Sung;Lin, R.P.;Parks, G.K.;Halekas, J.S.;Larson, D.E.;Eastwood, J.P.;Roelof, E.C.;Horbury, T.S.
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.42.3-43
    • /
    • 2009
  • Triplets of identical cubesats will be built to carry out the following scientific objectives: i) multi-observations of ionospheric ENA (Energetic Neutral Atom) imaging, ii) ionospheric signature of suprathermal electrons and ions associated with auroral acceleration as well as electron microbursts, and iii) complementary measurements of magnetic fields for particle data. Each satellite, a cubesat for ion, neutral, electron, and magnetic fields (CINEMA), is equipped with a suprathermal electron, ion, neutral (STEIN) instrument and a 3-axis magnetometer of magnetoresistive sensors. TRIO is developed by three institutes: i) two CINEMA by Kyung Hee University (KHU) under the WCU program, ii) one CINEMA by UC Berkeley under the NSF support, and iii) three magnetometers by Imperial College, respectively. Multi-spacecraft observations in the STEIN instruments will provide i) stereo ENA imaging with a wide angle in local times, which are sensitive to the evolution of ring current phase space distributions, ii) suprathermal electron measurements with narrow spacings, which reveal the differential signature of accelerated electrons driven by Alfven waves and/or double layer formation in the ionosphere between the acceleration region and the aurora, and iii) suprathermal ion precipitation when the storm-time ring current appears. In addition, multi-spacecraft magnetic field measurements in low earth orbits will allow the tracking of the phase fronts of ULF waves, FTEs, and quasi-periodic reconnection events between ground-based magnetometer data and upstream satellite data.

  • PDF

An Experimental Study on the Stability of Breakwater Head by the Wave Directional Effects (입사파의 방향성효과에 의한 방파제 제두부의 안정성에 관한 실험적 연구)

  • SOHN Byung-Kyu;KIM Hong-Jin;RYU Cheong-Ro
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.6
    • /
    • pp.713-719
    • /
    • 2001
  • The aim of this study is to check the application criteria of the conventional techniques and clarify the effects of breaker depth, seabed conditions on the stability in relation to the effects of uncertainty of storm duration and directional irregular waves. The typical damage modes were divided by the direct wave force on the armor unit and by the local scouring around the toe of a breakwater head by the model experiments. The destruction modes are defined, and some criteria on the damage modes and scouring/deposition at the toe of a breakwater head in relating the wave-bottom-structural conditions can be checked using the multi-directonal irregular wave generator system. According to the results, it is emphasized that the 3-D effects on the stability should be analyzed in the design of multi-purpose/function coastal structures in consideration of the evaluation of spatial variation of damage modes and hydraulic characteristics as well as the wave distribution along the structures.

  • PDF

Study of flood prevention alternative priorities using MCDM (Multi-Criteria Decision Making) (MCDM을 이용한 홍수방어대안 우선순위 정립에 관한 연구)

  • Lim, Donghwa;Jeong, Soonchan;Lee, Eunkyung;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.3
    • /
    • pp.169-179
    • /
    • 2017
  • Recently, due to global warming and climate change in Korea, local heavy storm occurs frequently. In this study, the risky areas for flooding in urban areas are analyzed for flood inundation based on two-dimensional urban flood runoff model (XP-SWMM) focusing on coastal high flood-risk urban areas. In addition, the MCDM (Multi-Criteria Decision Making) technique is utilized in order to establish the flood defense structural measures. The alternative flood reduction method are compared and the optimum flood defense measures are selected. A simulation model was used with three structural flood prevention measures (drainage pipe construction, water detention, flood pumping station). In order to decrease the flooding area, flood assessment criteria are suggested (flooded area, maximum inundation depth, damaged residential area, construction cost). Priorities of alternatives are determined by using compromise programming. As a result, the optimal flood defence alternative suggested for Janghang Zone 1 is flood pumping station and for Janghang Zone 2, 3 are drainage pipe construction.

Application of dual drainage system model for inundation analysis of complex watershed (복합유역의 침수해석을 위한 이중배수체계 유출모형의 적용)

  • Lee, Jaejoon;Kwak, Changjae;Lee, Sungho
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.301-312
    • /
    • 2019
  • The importance of the dual drainage system model has increased as the urban flood damage has increased due to the increase of local storm due to climate change. The dual drainage model is a model for more accurately expressing the phenomena of surface flow and conduit flow. Surface runoff and pipe runoff are analyzed through the respective equations and parameters. And the results are expressed visually in various ways. Therefore, inundation analysis results of dual drainage model are used as important data for urban flood prevention plan. In this study, the applicability of the COBRA model, which can be interpreted by combining the dual drainage system with the natural watershed and the urban watershed, was investigated. And the results were compared with other dual drainage models (XP-SWMM, UFAM) to determine suitability of the results. For the same watershed, the XP-SWMM simulates the flooding characteristics of 3 types of dual drainage system model and the internal flooding characteristics due to the lack of capacity of the conduit. UFAM showed the lowest inundation analysis results compared with the other models according to characteristics of consideration of street inlet. COBRA showed the general result that the flooded area and the maximum flooding depth are proportional to the increase in rainfall. It is considered that the COBRA model is good in terms of the stability of the model considering the characteristics of the model to simulate the effective rainfall according to the soil conditions and the realistic appearance of the flooding due to the surface reservoir.