• Title/Summary/Keyword: Local search

Search Result 1,003, Processing Time 0.027 seconds

An Efficient Search Method for Binary-based Block Motion Estimation (이진 블록 매칭 움직임 예측을 위한 효율적인 탐색 알고리듬)

  • Lim, Jin-Ho;Jeong, Je-Chang
    • Journal of Broadcast Engineering
    • /
    • v.16 no.4
    • /
    • pp.647-656
    • /
    • 2011
  • Motion estimation using one-bit transform and two-bit transform reduces the complexity for computation of matching error; however, the peak signal-to-noise ratio (PSNR) is degraded. Modified 1BT (M1BT) and modified 2BT (M2BT) have been proposed to compensate degraded PSNR by adding conditional local search. However, these algorithms require many additional search points in fast moving sequences with a block size of $16{\times}16$. This paper provides more efficient search method by preparing candidate blocks using the number of non-matching points (NNMP) than the conditional local search. With this NNMP-based search, we can easily obtain candidate blocks with small NNMP and efficiently search final motion vector. Experimental results show that the proposed algorithm not only reduces computational complexity, but also improves PSNR on average compared with conventional search algorithm used in M1BT, M2BT and AM2BT.

A Study on Improvements for Digital Archives Online Services: Focusing on the Development of Search Service Evaluation Factors in Local Digital Archives (디지털 아카이브의 온라인 서비스 개선방안 연구: 지역 아카이브의 검색서비스 평가요소 개발을 중심으로)

  • Ha, Eunmi;Seol, Boyeon;Kim, Hyeonjin
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.22 no.3
    • /
    • pp.83-102
    • /
    • 2022
  • This study aims to propose considerations for improving search services in local archives. In this study, evaluation areas and factors were derived through the analysis of previous research and case studies of finding aids and archival contents in local archives. Afterward, an interview was conducted with five experts to verify the developed evaluation area and factors. Through the evaluation factors and considerations suggested in this study, it will be possible to objectively identify the search service of the institution. In addition, it is expected that practitioners can use it as basic data in the future, and furthermore, it will help improve the search service.

Local Solution of a Sequential Algorithm Using Orthogonal Arrays in a Discrete Design Space (이산설계공간에서 직교배열표를 이용한 순차적 알고리듬의 국부해)

  • Yi, Jeong-Wook;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1399-1407
    • /
    • 2004
  • Structural optimization has been carried out in continuous design space or in discrete design space. Generally, available designs are discrete in design practice. However, the methods for discrete variables are extremely expensive in computational cost. An iterative optimization algorithm is proposed for design in a discrete space, which is called a sequential algorithm using orthogonal arrays (SOA). We demonstrate verifying the fact that a local optimum solution can be obtained from the process with this algorithm. The local optimum solution is defined in a discrete design space. Then the search space, which is a set of candidate values of each design variables formed by the neighborhood of a current design point, is defined. It is verified that a local optimum solution can be found by sequentially moving the search space. The SOA algorithm has been applied to problems such as truss type structures. Then it is confirmed that a local solution can be obtained by using the SOA algorithm

Local Solution of Sequential Algorithm Using Orthogonal Arrays in Discrete Design Space (이산설계공간에서 직교배열표를 이용한 순차적 알고리듬의 국부해)

  • Yi, Jeong-Wook;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1005-1010
    • /
    • 2004
  • The structural optimization has been carried out in the continuous design space or in the discrete design space. Generally, available designs are discrete in design practice. But methods for discrete variables are extremely expensive in computational cost. In order to overcome this weakness, an iterative optimization algorithm was proposed for design in the discrete space, which is called as a sequential algorithm using orthogonal arrays (SOA). We focus to verify the fact that the local solution can be obtained throughout the optimization with this algorithm. The local solution is defined in discrete design space. Then the search space, which is the set of candidate values of each design variables formed by the neighborhood of current design point, is defined. It is verified that a local solution can be founded by moving sequentially the search space. The SOA algorithm has been applied to problems such as truss type structures. Then it is confirmed that a local solution can be obtained using the SOA algorithm

  • PDF

Neighborhood Reduction in Local Search based on Geospatial Relation for Multi Depot Vehicle Routing Problems

  • Tamashiro, Hiroshi;Nakamura, Morikazu;Tamaki, Shiro;Onaga, Kenji
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.595-598
    • /
    • 2002
  • This paper proposes neighborhood reduction techniques in local search of the customer decomposition subproblem in the Multi Depots Vehicle Routing Problem with Time Windows (MDVRPTW) by using geospatial relation among depots and customers. The neighborhood of the customer decomposition subproblem can be simply and well defined but it should include excessively bad solution candidates. Our techniques find such candidates by using information of the problem domain, geographical relation. We use our techniques in Tabu Search and evaluate the effectiveness in computer experiment.

  • PDF

A Proposal of Genetic Algorithms with Function Division Schemes

  • Tsutsui, Shigeyoshi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.652-658
    • /
    • 1998
  • We introduce the concept of a bi-population scheme for real-coded GAs consisting of an explorer sub-Ga and an exploiter sub-GA. The explorer sub-GA mainly performs global exploration of the search space, and incorporates a restart mechanism to help avoid being trapped at local optima. The exploiter sub-GA performs exploitation of fit local areas of the search space around the neighborhood of the best-so-far solution. Thus the search function of the algorithm is divided. the proposed technique exhibits performance significantly superior to standard GAs on two complex highly multimodal problems.

  • PDF

On Modification and Application of the Artificial Bee Colony Algorithm

  • Ye, Zhanxiang;Zhu, Min;Wang, Jin
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.448-454
    • /
    • 2018
  • Artificial bee colony (ABC) algorithm has attracted significant interests recently for solving the multivariate optimization problem. However, it still faces insufficiency of slow convergence speed and poor local search ability. Therefore, in this paper, a modified ABC algorithm with bees' number reallocation and new search equation is proposed to tackle this drawback. In particular, to enhance solution accuracy, more bees in the population are assigned to execute local searches around food sources. Moreover, elite vectors are adopted to guide the bees, with which the algorithm could converge to the potential global optimal position rapidly. A series of classical benchmark functions for frequency-modulated sound waves are adopted to validate the performance of the modified ABC algorithm. Experimental results are provided to show the significant performance improvement of our proposed algorithm over the traditional version.

Extraction of Shape Information of Cost Function Using Dynamic Encoding Algorithm for Searches(DEAS) (최적화기법인 DEAS를 이용한 비용함수의 형상정보 추출)

  • Kim, Jong-Wook;Park, Young-Su;Kim, Tae-Gyu;Kim, Sang-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.790-797
    • /
    • 2007
  • This paper proposes a new measure of cost function ruggedness in local optimization with DEAS. DEAS is a computational optimization method developed since 2002 and has been applied to various engineering fields with success. Since DEAS is a recent optimization method which is rarely introduced in Korean, this paper first provides a brief overview and description of DEAS. In minimizing cost function with this non-gradient method, information on function shape measured automatically will enhance search capability. Considering the search strategies of DEAS are well designed with binary matrix structures, analysis of search behaviors will produce beneficial shape information. This paper deals with a simple quadratic function contained with various magnitudes of noise, and DEAS finds local minimum yielding ruggedness measure of given cost function. The proposed shape information will be directly used in improving DEAS performance in future work.

Fast Object Recognition using Local Energy Propagation from Combination of Saline Line Groups (직선 조합의 에너지 전파를 이용한 고속 물체인식)

  • 강동중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.311-311
    • /
    • 2000
  • We propose a DP-based formulation for matching line patterns by defining a robust and stable geometric representation that is based on the conceptual organizations. Usually, the endpoint proximity and collinearity of image lines, as two main conceptual organization groups, are useful cues to match the model shape in the scene. As the endpoint proximity, we detect junctions from image lines. We then search for junction groups by using geometric constraint between the junctions. A junction chain similar to the model chain is searched in the scene, based on a local comparison. A Dynamic Programming-based search algorithm reduces the time complexity for the search of the model chain in the scene. Our system can find a reasonable matching, although there exist severely distorted objects in the scene. We demonstrate the feasibility of the DP-based matching method using both synthetic and real images.

  • PDF

Multi-objective optimization of foundation using global-local gravitational search algorithm

  • Khajehzadeh, Mohammad;Taha, Mohd Raihan;Eslami, Mahdiyeh
    • Structural Engineering and Mechanics
    • /
    • v.50 no.3
    • /
    • pp.257-273
    • /
    • 2014
  • This paper introduces a novel optimization technique based on gravitational search algorithm (GSA) for numerical optimization and multi-objective optimization of foundation. In the proposed method, a chaotic time varying system is applied into the position updating equation to increase the global exploration ability and accurate local exploitation of the original algorithm. The new algorithm called global-local GSA (GLGSA) is applied for optimization of some well-known mathematical benchmark functions as well as two design examples of spread foundation. In the foundation optimization, two objective functions include total cost and $CO_2$ emissions of the foundation subjected to geotechnical and structural requirements are considered. From environmental point of view, minimization of embedded $CO_2$ emissions that quantifies the total amount of carbon dioxide emissions resulting from the use of materials seems necessary to include in the design criteria. The experimental results demonstrate that, the proposed GLGSA remarkably improves the accuracy, stability and efficiency of the original algorithm.