• Title/Summary/Keyword: Local quantization

Search Result 73, Processing Time 0.023 seconds

A Novel Cluster-Based Cooperative Spectrum Sensing with Double Adaptive Energy Thresholds and Multi-Bit Local Decision in Cognitive Radio

  • Van, Hiep-Vu;Koo, In-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.5
    • /
    • pp.461-474
    • /
    • 2009
  • The cognitive radio (CR) technique is a useful tool for improving spectrum utilization by detecting and using the vacant spectrum bands in which cooperative spectrum sensing is a key element, while avoiding interfering with the primary user. In this paper, we propose a novel cluster-based cooperative spectrum sensing scheme in cognitive radio with two solutions for the purpose of improving in sensing performance. First, for the cluster header, we use the double adaptive energy thresholds and a multi-bit quantization with different quantization interval for improving the cluster performance. Second, in the common receiver, the weighed HALF-voting rule will be applied to achieve a better combination of all cluster decisions into a global decision.

Color image quantization using color activity weighted distortion measure of human vision (인간 시각의 칼라 활성 가중 왜곡 척도를 이용한 칼라 영상 양자화)

  • 김경만;이응주;박양우;이채수;하영호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.101-110
    • /
    • 1996
  • Color image quantization is a process of selecting a set of colors to display an image with some representative colors without noticeable perceived difference. It is very important in many applications to display a true color image in a low cost color monitor or printer. the basic problem is how to display 224 colors with 256 or less colors, called color palette. In this paper, we propose an algorithm to design the 256 or less size color palette by using spatial maskin geffect of HVS and subjective distortion measure weighted by color palette by using spatial masking effect of HVS and subjective distortion measure weighted by color activity in 4*4 local region in any color image. The proposed algorithm consists of octal prequantization and subdivision quantization processing step using the distortion measure and modified Otsu's between class variance maximization method. The experimental results show that the proposed algorithm has higher visual quality and needs less consuming time than conventional algorithms.

  • PDF

The Improved Watershed Algorithm using Adaptive Local Threshold (적응적 지역 임계치를 이용한 개선된 워터쉐드 알고리즘)

  • Lee Seok-Hee;Kwon Dong-Jin;Kwak Nae-Joung;Ahn Jae-Hyeong
    • Annual Conference of KIPS
    • /
    • 2004.11a
    • /
    • pp.891-894
    • /
    • 2004
  • This paper proposes an improved image segmentation algorithm by the watershed algorithm based on the local adaptive threshold on local minima search and the fixing threshold on label allocation. The previous watershed algorithm generates the problem of over-segmentation. The over-segmentation makes the boundary in the inaccuracy region by occurring around the object. In order to solve those problems we quantize the input color image by the vector quantization, remove noise and find the gradient image. We sorted local minima applying the local adaptive threshold on local minima search of the input color image. The simulation results show that the proposed algorithm controls over-segmentation and makes the fine boundary around segmented region applying the fixing threshold based on sorted local minima on label allocation.

  • PDF

Research on Per-cell Codebook based Channel Quantization for CoMP Transmission

  • Hu, Zhirui;Feng, Chunyan;Zhang, Tiankui;Gao, Qiubin;Sun, Shaohui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.6
    • /
    • pp.1828-1847
    • /
    • 2014
  • Coordinated multi-point (CoMP) transmission has been regarded as a potential technology for LTE-Advanced. In frequency division duplexing systems, channel quantization is applied for reporting channel state information (CSI). Considering the dynamic number of cooperation base stations (BSs), asymmetry feature of CoMP channels and high searching complexity, simply increasing the size of the codebook used in traditional multiple antenna systems to quantize the global CSI of CoMP systems directly is infeasible. Per-cell codebook based channel quantization to quantize local CSI for each BS separately is an effective method. In this paper, the theoretical upper bounds of system throughput are derived for two codeword selection schemes, independent codeword selection (ICS) and joint codeword selection (JCS), respectively. The feedback overhead and selection complexity of these two schemes are analyzed. In the simulation, the system throughput of ICS and JCS is compared. Both analysis and simulation results show that JCS has a better tradeoff between system throughput and feedback overhead. The ICS has obvious advantage in complexity, but it needs additional phase information (PI) feedback for obtaining the approximate system throughput with JCS. Under the same number of feedback bits constraint, allocating the number of bits for channel direction information (CDI) and PI quantization can increase the system throughput, but ICS is still inferior to JCS. Based on theoretical analysis and simulation results, some recommendations are given with regard to the application of each scheme respectively.

Multi-scale Local Difference Directional Number Pattern for Group-housed Pigs Recognition

  • Huang, Weijia;Zhu, Weixing;Zhang, Zhengyan;Guo, Yizheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3186-3203
    • /
    • 2021
  • In this paper, a multi-scale local difference directional number (MLDDN) pattern is proposed for pig identification. Firstly, the color images of individual pig are converted into grey images by the most significant bits (MSB) quantization, which makes the grey values have better discrimination. Then, Gabor amplitude and phase responses on different scales are obtained by convoluting the grey images with Gabor masks. Next, by calculating the main difference of local edge directions instead of traditionally edge information, the directional numbers of Gabor amplitude and phase responses are encoded. Finally, the block histograms of the encoded images are concatenated on each scale, and the maximum pooling is adopted on different scales to avoid the high feature dimension. Experimental results on two pigsties show that MLDDN impressively outperforms the other widely used local descriptors.

A novel approach to design of local quantizers for distributed estimation

  • Kim, Yoon Hak
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.558-564
    • /
    • 2018
  • In distributed estimation where each node can collect only partial information on the parameter of interest without communication between nodes and quantize it before transmission to a fusion node which conducts estimation of the parameter, we consider a novel quantization technique employed at local nodes. It should be noted that the performance can be greatly improved if each node can transmit its measurement to one designated node (namely, head node) which can quantize its estimate using the total rate available in the system. For this case, the best strategy at the head node would be simply to partition the parameter space using the generalized Lloyd algorithm, producing the global codewords, one of which is closest to the estimate is transmitted to a fusion node. In this paper, we propose an iterative design algorithm that seeks to efficiently assign the codewords into each of quantization partitions at nodes so as to achieve the performance close to that of the system with the head node. We show through extensive experiments that the proposed algorithm offers a performance improvement in rate-distortion perspective as compared with previous novel techniques.

Face Recognition using Non-negative Matrix Factorization and Learning Vector Quantization (비음수 행렬 분해와 학습 벡터 양자화를 이용한 얼굴 인식)

  • Jin, Donghan;Kang, Hyunchul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.55-62
    • /
    • 2017
  • Non-negative matrix factorization (NMF) is one of the typical parts-based representation in which images are expressed as a linear combination of basis vectors that show the lcoal features or objects in the images. In this paper, we represent face images using various NMF methods and recognize their face identities based on extracted features using a learning vector quantization. We analyzed the various NMF methods by comparing extracted basis vectors. Also we confirmed the availability of NMF to the face recognition by verification of recognition rate of the various NMF methods.

Evaluation of Histograms Local Features and Dimensionality Reduction for 3D Face Verification

  • Ammar, Chouchane;Mebarka, Belahcene;Abdelmalik, Ouamane;Salah, Bourennane
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.468-488
    • /
    • 2016
  • The paper proposes a novel framework for 3D face verification using dimensionality reduction based on highly distinctive local features in the presence of illumination and expression variations. The histograms of efficient local descriptors are used to represent distinctively the facial images. For this purpose, different local descriptors are evaluated, Local Binary Patterns (LBP), Three-Patch Local Binary Patterns (TPLBP), Four-Patch Local Binary Patterns (FPLBP), Binarized Statistical Image Features (BSIF) and Local Phase Quantization (LPQ). Furthermore, experiments on the combinations of the four local descriptors at feature level using simply histograms concatenation are provided. The performance of the proposed approach is evaluated with different dimensionality reduction algorithms: Principal Component Analysis (PCA), Orthogonal Locality Preserving Projection (OLPP) and the combined PCA+EFM (Enhanced Fisher linear discriminate Model). Finally, multi-class Support Vector Machine (SVM) is used as a classifier to carry out the verification between imposters and customers. The proposed method has been tested on CASIA-3D face database and the experimental results show that our method achieves a high verification performance.

Efficient distributed estimation based on non-regular quantized data

  • Kim, Yoon Hak
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.710-715
    • /
    • 2019
  • We consider parameter estimation in distributed systems in which measurements at local nodes are quantized in a non-regular manner, where multiple codewords are mapped into a single local measurement. For the system with non-regular quantization, to ensure a perfect independent encoding at local nodes, a local measurement can be encoded into a set of a great number of codewords which are transmitted to a fusion node where estimation is conducted with enormous computational cost due to the large cardinality of the sets. In this paper, we propose an efficient estimation technique that can handle the non-regular quantized data by efficiently finding the feasible combination of codewords without searching all of the possible combinations. We conduct experiments to show that the proposed estimation performs well with respect to previous novel techniques with a reasonable complexity.

Karhunen - Loeve Transform -Classified Vector Quantization for Efficient Image Coding (Karhunen-loeve 변환과 분류 벡터 양자화에 의한 효율적인 영상 부호화)

  • 김태용;최흥문
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.11
    • /
    • pp.44-52
    • /
    • 1996
  • This paper proposes a KLT-CVQ scheme using PCNN to improbe the quality of the reconstructed images at a given bit rate. By using the PCNN and classified vector quantization, we exploit the high energy compaction and compelte decorrelation capbilities of the KLT, and the pdf (probability density function) shape and space-filling advantages of the vQ to improve the performance of the proposed hybrid coding technique. In order to preserve the preceptual fetures such as the edge components in the reconstructed images, we classified the input image blocks according to the texture energy measures of the local statistics and vector-coded them adaptively, and thereby reduces the possible edge degradation in the reconstructed images. The results of the computer simulations show that the performance of the proposed KLT-CVQ is higher than that of the KLT-CSQ or the DCT-CVQ in the quality of the reconstructed images at a given bit rate.

  • PDF