• Title/Summary/Keyword: Local pressure coefficient

Search Result 144, Processing Time 0.024 seconds

Thermal Characteristics of Discrete Heat Sources Using Coolants

  • Choi, Min-Goo;Cho, Keum-Nam
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2001
  • The present study investigated the effects of experimental parameters on the thermal characteristics of an in-line 6x1 array of discrete heat sources for a test multichip module using water, PF-5060 and paraffin slurry. The parameters were heat flux of 10-40W/$cm^2$. Reynolds number of 3,000~20,000 and mass fraction up to 10% for paraffin slurry The size of paraffin slurry was within 10~40$\mu$m before and after experiments. The local heat transfer coefficients for the paraffin slurry were larger than those for water. Thermally fully developed conditions were observed after the third or fourth row (five or seven times of the chip length) and the paraffin slurry showed effective cooling performance at the high heat flux The paraffin slurry with the mass fraction of 5% showed the most efficient cooling performance when the heat transfer and the pressure drop in the test section are considered simultaneously. The experimental data at the fourth and sixth rows are best agreed with the values predicted by the Malina and Sparrow`s correlation among other correlations, and the empirical correlations for water and 5% paraffin slurry were obtained at the first and sixth rows when the channel Reynolds number is over 3,000.

  • PDF

Experimental and Numerical Investigation on Heat Transfer and Fluid Flow Characteristics in the Ribbed Square Channel (거친 사각채널에서 열전달과 유체유동 특성에 관한 실험 및 수치해석)

  • Kang, Ho-Keun;Baer, Sung-Taek;Lee, Dae-Hee;Ahn, Soo-Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.275-283
    • /
    • 2006
  • Experiment and three dimensional numerical investigations of incompressible turbulent flow through square channels with one- and two-sided ribbed walls are performed to determine pressure drop and heat transfer. The CFX(version 5.7) software package is used for the computation. The ribbed walls have a $45^{\circ}$ inclined square rib. Uniform heat flux is maintained on whole inner heat transfer channel area. The numerical results coincide with experimental data that obtained for $7,600{\le}Re{\le}24.900$, the pitch-to-rib height ratio (p/e) of 8.0. and the rib height-to-channel hydraulic diameter ratio ($e/D_h$) of 0.0667. The results show that values of local heat transfer coefficient and friction factor in the channel with two-sided ribbed wall are higher than those in the channel with one-sided ribbed walls.

Evaluation of the Residual Stress with respect to Supporting Type of Multi-layer Thin Film for the Metallization of Pressure Sensor (압력센서의 배선을 위한 다층 박막의 지지조건 변화에 따른 잔류응력 평가)

  • 심재준;한근조;김태형;한동섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1537-1540
    • /
    • 2003
  • MEMS technology with micro scale is complete system utilized as the sensor. micro electro device. The metallization of MEMS is very important to transfer the power operating the sensor and signal induced from sensor part. But in the MEMS structures local stress concentration and deformation is often happened by geometrical shape and different constraint on the metallization. Therefore. this paper studies the effect of supporting type and thickness ratio about thin film thickness of the substrate thickness for the residual stress variation caused by thermal load in the multi-layer thin film. Specimens were made from materials such as Al, Au and Cu and uniform thermal load was applied, repeatedly. The residual stress was measured by FEA and nano-indentation using AFM. Generally, the specimen made of Al induced the large residual stress and the 1st layer made of Al reduced the residual stress about half percent than 2nd layer. Specimen made of Cu and Au being the lower thermal expansion coefficient induce the minimum residual stress. Similarly the lowest indentation length was measured in the Au_Cu specimen by nano-indentation.

  • PDF

Effect of Incidence Angle on Turbine Blade Heat Transfer Characteristics (II) - Blade Surface - (입사각 변화에 따른 터빈 블레이드에서의 열전달 특성 변화 (II) - 블레이드 표면 -)

  • Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.357-366
    • /
    • 2007
  • The present study investigated local heat/mass transfer characteristics on the surface of the rotating turbine blade with various incidence angles. The experiments are conducted in a low speed annular cascade with a single stage turbine. The blade has a flat tip with the mean tip clearance of 2.5% of the blade chord. A naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. At design condition, the inlet Reynolds number is $Re_c=1.5{\times}10^5$ which results in the blade rotation speed of 255.8 rpm. Also, the effect of off-design condition is examined with various incidence angles between $-15^{\circ}$ and $+7{\circ}$. The results indicated that the incidence angle has significant effects on the blade surface heat transfer. In mid-span region, the laminar separation region on the pressure side is reduced and the laminar flow region on the suction side shrinks with increasing incidence angle. Near the tip, the effect of tip leakage flow increases in span wise and axial directions as the incidence angle decreases because the tip leakage flow is formed near the suction side surface. However, the effect of tip leakage flow is reduced with positive incidence angle.

A Study on the heat transfer characteristics of a normal axisymmetric under-expanded impinging jet on a surface (수직 축대칭 과소팽창 충돌 제트의 표면 열전달 특성 연구)

  • Yu, Man-Sun;Kim, Byung-Gi;Cho, Hyung-Hee;Hwang, Ki-Young;Bae, Ju-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.84-91
    • /
    • 2005
  • An experimental investigation has been carried out to examine heat-transfer characteristics of an axisymmetric, under-expanded, sonic jet impinging on a flat plate and the local measurement of surface pressures and heat transfer coefficients on a plate have been achieved together with a visualization test of shock structure in a jet. Heat transfer coefficients on a plate have been found to be changed significantly depending on the under-expansion ratio as much as the nozzle-to-plate distance. These phenomena could be explained by the wall pressure measurement and the shock visualization.

Evaluation of the Residual Stress with Respect to Supporting Type of Multi-layer Thin Film for the Metallization of Pressure Sensor (압력센서의 배선을 위한 다층 박막의 지지조건 변화에 따른 잔류응력 평가)

  • Shim, Jae-Joon;Han, Geun-Jo;Han, Dong-Seup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.532-538
    • /
    • 2004
  • MEMS technology applying to the sensors and micro-electro devices is complete system. These microsystems are made by variable processes. Especially, the mentallization process has very important functions to transfer the power operating the sensor and signal induced from sensor part. But in the structures of MEMS the local stress concentration and deformation are often yielded by an irregular geometrical shape and different constraint. Therefore, this paper studies the effect of supporting type and thickness ratio about thin film of the substrate on the residual stress variation when the thermal loads is applied to the multi-layer thin film fabricated by metallization process. Specimens were made from several materials such as Al, Au and Cu. Then, uniform thermal load was applied, repeatedly. The residual stress was measured by FE Analysis and nano-indentation method using AFM. Generally, the specimen made of Al induced the larger residual stress than that of made of other materials. Specimen made of Cu and Au having the low thermal expansion coefficient induces the minimum residual stress. Similarly, the lowest indentation length was measured by nano-indentation method in the Si/Au/Cu specimen. Particularly, clusters are created in the specimen made of Cu by thermal load and the indentation length became increasingly large by cluster formation.

Numerical Comparison of Thermalhydraulic Aspects of Supercritical Carbon Dioxide and Subcritical Water-Based Natural Circulation Loop

  • Sarkar, Milan Krishna Singha;Basu, Dipankar Narayan
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.103-112
    • /
    • 2017
  • Application of the supercritical condition in reactor core cooling needs to be properly justified based on the extreme level of parameters involved. Therefore, a numerical study is presented to compare the thermalhydraulic performance of supercritical and single-phase natural circulation loops under low-to-intermediate power levels. Carbon dioxide and water are selected as respective working fluids, operating under an identical set of conditions. Accordingly, a three-dimensional computational model was developed, and solved with an appropriate turbulence model and equations of state. Large asymmetry in velocity and temperature profiles was observed in a single cross section due to local buoyancy effect, which is more prominent for supercritical fluids. Mass flow rate in a supercritical loop increases with power until a maximum is reached, which subsequently corresponds to a rapid deterioration in heat transfer coefficient. That can be identified as the limit of operation for such loops to avoid a high temperature, and therefore, the use of a supercritical loop is suggested only until the appearance of such maxima. Flow-induced heat transfer deterioration can be delayed by increasing system pressure or lowering sink temperature. Bulk temperature level throughout the loop with water as working fluid is higher than supercritical carbon dioxide. This is until the heat transfer deterioration, and hence the use of a single-phase loop is prescribed beyond that limit.

An investigation on heat transfer effects of two dimensional plane jet attaching offseted obliqued wall (단이 진 경사벽면에 부착되는 2차원 평면제트의 열전달 효과에 관한 연구)

  • Yun, Sun-Hyeon;Lee, Dae-Hui;Sim, Jae-Gyeong;Song, Heung-Bok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1314-1325
    • /
    • 1997
  • Experiments have been conducted to determine the flow and heat transfer characteristics for a two-dimensional turbulent wall attaching offset jet at different oblique angles to a flat surface. The distributions of the wall static pressure coefficient and time-averaged reattachment position for various offset ratios and oblique angles have been measured. The local Nusselt number distributions on the plate surface were also measured using liquid crystal as a temperature indicator. The new hue-capturing technique utilizing a true color image processing system was used to accurately determine the temperature of the liquid crystal. The experiments were carried out at Reynolds number, Re (based on D) of from 7300 to 21,300 with offset ratio, H/D from 2.5 to 10, and oblique angle, .alpha. from 0 deg. to 400 deg..

Experimental investigation of two-phase natural circulation loop as passive containment cooling system

  • Lim, Sun Taek;Kim, Koung Moon;Kim, Haeseong;Jerng, Dong-Wook;Ahn, Ho Seon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3918-3929
    • /
    • 2021
  • In this study, we experimentally investigate of a two-phase natural circulation loop that functions as a passive containment cooling system (PCCS). The experimental apparatus comprises two loops: a hot loop, for simulating containment under severe accidents, and a natural circulation loop, for simulating the PCCS. The experiment is conducted by controlling the pressure and inlet temperature of the hot loop in the range of 0.59-0.69 MPa (abs) and 119.6-158.8 ℃, respectively. The heat balance of the hot loop is established and compared with a natural circulation loop to assess the thermal reliability of the experimental apparatus, and an additional system is installed to measure the vapor mass flow rate. Furthermore, the thermal-hydraulic characteristics are considered in terms of a temperature, mass flow rate, heat transfer coefficient (HTC), etc. The flow rate of the natural circulation loop is induced primarily by flashing, and a distortion is observed in the local HTC because of the fully develop as well as subcooled boiling. As a result, we present the amount of heat capacity that the PCCS can passively remove according to the experimental conditions and compared the heat transfer performance using Chen's and Dittus-Boelter correlation.

Distribution of Wind Force Coefficients on the Two-span Arched House (아치형 2연동하우스의 풍력계수 분포에 관한 연구)

  • 이석건;이현우
    • Journal of Bio-Environment Control
    • /
    • v.1 no.2
    • /
    • pp.142-147
    • /
    • 1992
  • The wind pressure distributions were analyzed to provide fundamental criteria for the structural design on the two-span arched house according to the wind directions through the wind tunnel experiment. In order to investigate the wind force distributions, the variation of the wind force coefficients, the mean wind force coefficients, the drag force coefficients and the lift force coefficients were estimated using the experimental data. The results obtained are as follows : 1. The variation of the wind force with wind directions on the side walls was the greatest at the upwind edge of the walls. 2. The maximum negative wind force along the length of the roof appeared at the upwind edge at the wind direction of 60$^{\circ}$. 3. The maximum negative wind force along the width of the roof appeared at the width ratio and wind direction of 0$^{\circ}$ and 0.4 in the first house and 0.6 and 30$^{\circ}$ in the second house, respectively. 4. The mean negative wind force on the side walls of the first house at the wind direction of 0$^{\circ}$ was far greater than that of the second house, and the maximum negative wind force on the roof occurred at the wind direction of 30$^{\circ}$. 5. The maximum lift force appeared on the second house at the wind direction of 30$^{\circ}$, but the lift force on the first house was far greater than that on the second house at the wind direction of 0$^{\circ}$. 6. The parts to be considered for the local wind forces were the edges of the walls, and the edges of the x-direction and the width ratio, 0.4 of the y-direction in the roofs.

  • PDF