• 제목/요약/키워드: Local oxidation

검색결과 142건 처리시간 0.024초

유기성 폐기물의 발생 악취 제거를 위한 Delftia sp.의 성장조건 최적화 (Growth Optimization of Delftia sp. for the Odor Control of Organic Waste)

  • 권혁구;정준오;추덕성;이장훈
    • 한국환경보건학회지
    • /
    • 제35권5호
    • /
    • pp.393-401
    • /
    • 2009
  • We isolated and identified a microorganism which was excellent for ammonia oxidation in the biological control of ammonia gas in odor producing materials from organic composting. The isolated strain was tested for growth characteristics and ammonia elimination efficiency under various conditions of temperature, pH, carbon concentration and ammonia concentration. The strain was isolated from a culture broth used in a $NO_2$ producing test with Griess-Ilosvay reagent. The results of 16S rRNA sequence from the isolated strain by using BLANST (Basic Local Alignment Search Tool) and confirming RDP (Ribosomal Database Project II) and ERRD (The European Ribosomal RNA Database) indicate that the strain is related to Delftia sp. UV-Spectrophotometer (Shimadzu, UVmini-1240) was used as a microbial growth test by measuring turbidity on OD660nm and ammonia concentration was measured by Spectrophotometer (HACH, DR-4000). The optimum growth culture conditions of the ammonia oxidizer Delftia sp. were $30^{\circ}C$, pH 7, glucose concentration 1.00% and $(NH_4)_2SO_4$ 0.5 g/l. Ammonia elimination efficiency was over 94% under the same conditions.

광산란과 입자포집을 이용한 동축류 확산화염 내의 실리카 입자의 성장 측정(II) - 확산의 영향 - (An Experimental Study of Silica Particle Growth in a Coflow Diffusion Flame Utilizing Light Scattering and Local Sampling Technique (II) - Effects of Diffusion -)

  • 조재걸;이정훈;김현우;최만수
    • 대한기계학회논문집B
    • /
    • 제23권9호
    • /
    • pp.1151-1162
    • /
    • 1999
  • The effects of radial heat and $H_2O$ diffusion on the evolution of silica particles in coflow diffusion flames have been studied experimentally. The evolution of silica aggregate particles in coflow diffusion flames has been measured experimentally using light scattering and thermophoretic sampling techniques. The measurements of scattering cross section from $90^{\circ}$ light scattering have been utilized to calculate the aggregate number density and volume fraction using with combination of measuring the particle size and morphology through the localized sampling and a TEM image analysis. Aggregate or particle number densities and volume fractions were calculated using Rayleigh-Debye-Gans and Mie theory for fractal aggregates and spherical particles, respectively. Flame temperatures and volumetric differential scattering cross sections have been measured for different flame conditions such as inert gas species, $H_2$ flow rates, and burner injection configurations to examine the relation between the formation of particles and radial $H_2O$ diffusion. The comparisons of oxidation and flame hydrolysis have also been made for various $H_2$ flow rates using $N_2$ or $O_2$ as a carrier gas. Results indicate that the role of oxidation becomes dominant as both carrier gas($O_2$) and $H_2$ flow rates increases since the radial heat diffusion precedes $H_2O$ diffusion in coflow flames used in this study. The effect of carrier gas flow rates on the evolution of silica particles have also been studied. When using $N_2$ as a carrier gas, the particle volume fraction has a maximum at a certain carrier gas flow rate and as the flow rate is further increased, the hydrolysis reaction Is delayed and the spherical particles finally evolves into fractal aggregates due to decreased flame temperature and residence time.

질화규소 세라믹의 레이저 예열선삭에 관한 연구 (III) - SSN 및 HIPSN의 예열선삭시 절삭력 및 공구수명의 특성 - (A Study on Laser Assisted Machining for Silicon Nitride Ceramics (III) - Variation of the Main Cutting Force and Life of Cutting Tool by LAM of SSN and HIPSN -)

  • 김종도;이수진;강태영;서정;이제훈
    • Journal of Welding and Joining
    • /
    • 제28권6호
    • /
    • pp.35-39
    • /
    • 2010
  • Generally, ceramic material is very difficult to machine due to high strength and hardness. However, ceramic material can be machined at high temperature by plastic flow as metallic material due to the deterioration of the grain boundary glassy phase. Recently, a new method was developed to execute cutting process with CBN cutting tool by local heating of surface with laser. There are various parameters in LAM because it is a complex process with laser treatment and machining. During laser assisted machining, high power results in reducing of cutting force and increasing tool life, but excessive power brings oxidation of the surface. The effect of laser power, feed rate, cutting depth and etc. were investigated on the life of cutting tool. Chips were observed to find out suitable machining conditions. Chips of SSN had more flow-types than HIPSN. It means SSN is easier to machining. The life of cutting tool was increased with increasing laser power and decreasing feed rate and cutting depth.

리튬용융염계 산화성분위기에서 초합금의 고온 부식거동 (Hot Corrosion Behavior of Superalloys in Lithium Molten Salt under Oxidation Atmosphere)

  • 조수행;임종호;정준호;오승철;서중석;박성원
    • 한국재료학회지
    • /
    • 제14권11호
    • /
    • pp.813-820
    • /
    • 2004
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which is a chemically aggressive environment that is very corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Haynes 263, 75, and Inconel X-750, 718 in molten salt of $LiCl-Li_{2}O$ under oxidation atmosphere was investigated at $650^{\circ}C\;for\;72\sim360$ hours. At $3\;wt\%\;of\;Li_{2}O$, Haynes 263 alloy showed the highest corrosion resistance among the examined alloys, and up to $8\;wt\%\;of\;Li_{2}O$, Haynes 75 exhibited the highest corrosion resistance. Corrosion products were formed $Li(Ni,Co)O_2,\;LiNiO_2\;and\;LiTiO_2\;and\;Cr_{2}O_3$ on Haynes 263, $Cr_{2}O_3,\;NiFe_{2}O_4,\;LiNiO_2,\;Li_{2}NiFe_{2}O_4,\;Li_{2}Ni_{8}O_10$ and Ni on Haynes 75, $Cr_{2}O_3,\;(Al,Nb,Ti)O_2,\;NiFe_{2}O_4,\;and\;Li_{2}NiFe_{2}O_4$ on Inconel X-750 and $Cr_{2}O_3,\;NiFe_{2}O_4\;and\;CrNbO_4$ on Inconel 718, respectively. Haynes 263 showed local corrosion behavior and Haynes 75, Inconel X-750, 718 showed uniform corrosion behavior.

Assessment of DMS photochemistry at Jeju Island During the Asian Oust-Storm Period of Spring 2001 : Comparison of Model Simulations with Field Observations

  • Shon, Zang-Ho;Hilton Swan;Keith N. Bower;Kim, Ki-Hyun;Lee, Gangwoong;Kim, Jiyoung
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2002년도 추계학술대회 논문집
    • /
    • pp.343-343
    • /
    • 2002
  • This study examines the influence of long-range transport of dust particles and air pollutants on both local/regional DMS oxidation chemistry and the distribution of sulfur compounds at Jeju Island (33.17$^{\circ}$ N. 126.10$^{\circ}$ E) during the Asian dust-storm(ADS) period in April 2001. The atmospheric concentrations of these sulfur species were measured at a ground station on Jeju Island. Korea as Part of the ACE-Asia intensive operation. Three ADS events were observed during the periods of 10-12, 13-14. and 25-26 April. respectively. The concentrations of DMS and CS$_2$ were higher during the ADS period than during the non-Asian-dust-storm (NADS) period. Conversely. a difference in SO$_2$ levels during the ADS period was not distinguishable from those during the NADS period. The diurnal variation pattern of DMS observed was largely different from that in the remote marine boundary layer. DMS loss by NO$_3$ in the atmospheric boundary layer was dominant due to significantly high NOx levels influenced by the long-range transport of pollutants from East Asia to Jeju Island The DMS maximum during the ADS period was observed in the late afternoon. The oceanic fluxes of DMS during the ADS and NADS periods were estimated to be 5.7$\pm$2.3 and 2.9 (+2.8/-1.5) mole m$^{-2}$ day$^{-1}$ . respectively. The contribution of oxidized DMS to SO$_2$ levels at Jeju Island during the study period was found to be insignificant.

  • PDF

전자밀도함수이론을 이용한 세륨 산화물의 (111) 표면에서 일어나는 물 흡착 과정 분석 (Theoretical Investigation of Water Adsorption Chemistry of CeO2(111) Surfaces by Density Functional Theory)

  • 최혁;강은지;김현유
    • 한국재료학회지
    • /
    • 제30권5호
    • /
    • pp.267-271
    • /
    • 2020
  • Cerium oxide (ceria, CeO2) is one of the most wide-spread oxide supporting materials for the precious metal nanoparticle class of heterogeneous catalysts. Because ceria can store and release oxygen ions, it is an essential catalytic component for various oxidation reactions such as CO oxidation (2CO + O2 2CO2). Moreover, reduced ceria is known to be reactive for water activation, which is a critical step for activation of water-gas shift reaction (CO + H2O → H2 + CO2). Here, we apply van der Waals-corrected density functional theory (DFT) calculations combined with U correction to study the mechanism of water chemisorption on CeO2(111) surfaces. A stoichiometric CeO2(111) and a defected CeO2(111) surface showed different water adsorption chemistry, suggesting that defected CeO2 surfaces with oxygen vacancies are responsible for water binding and activation. An appropriate level of water-ceria chemisorption energy is deduced by vdW-corrected non-local correlation coupled with the optB86b exchange functional, whereas the conventional PBE functional describes weaker water-ceria interactions, which are insufficient to stabilize (chemisorb) water on the ceria surfaces.

AZ31 Mg합금의 PEO피막 형성거동에 미치는 인산나트륨 농도의 영향 (Effect of Na3PO4 Concentration on The Formation Behavior of PEO films on AZ31 Mg Alloy)

  • 문성모;김주석
    • 한국표면공학회지
    • /
    • 제52권5호
    • /
    • pp.265-274
    • /
    • 2019
  • Formation behavior of PEO (Plasma Electrolytic Oxidation) films on AZ31 Mg alloy was investigated under application of 310 Hz AC as a function of $Na_3PO_4$ concentration from 0.02 M to 0.2 M. Film formation voltage and in-situ observation of arcs generated on the specimen surface were recorded with time, and surface morphologies of the PEO films were investigated using optical microscopy, confocal scanning laser microscopy and scanning electron microscopy. PEO film formation voltage decreased linearly with increasing $Na_3PO_4$ concentration which is attributed to the increase of solution pH. PEO films were grown uniformly over the entire surface in $Na_3PO_4$ solutions between 0.05 M and 0.1 M. However, non-uniform PEO films with white spots were formed in $Na_3PO_4$ solutions containing more than 0.1 M. Thickness and roughness of PEO films on AZ31 Mg alloy increased linearly with increasing $Na_3PO_4$ concentration and their increasing rates appeared to be much higher under 1 M than above 1 M. The experimental results suggest that phosphate ions can contribute to the formation of PEO films but higher $Na_3PO_4$ concentration more than 1 M results in local damages of PEO films due to repeated generation of white arcs at the same surface site of AZ31 Mg alloy.

부산 태종대 굴통머리 미역(Undaria pinnatifida)의 화학적 특성 및 항산화 효과 (Chemical Characteristics and Antioxidant Effects of Sea Mustard Undaria pinnatifida from the Gultongmeori Area, Taejongdae, Busan)

  • 신영도;이정우;최명원 ;임선영
    • 한국수산과학회지
    • /
    • 제56권2호
    • /
    • pp.196-203
    • /
    • 2023
  • We investigated the nutritional characteristics and antioxidant effects of sea mustard Undaria pinnatifida fractions from Gultongmeori in Taejongdae, Youngdo, Busan. Based on dry weight, the moisture, crude protein, crude lipid, crude ash, and crude fiber contents were 34.98%, 11.55%, 0.43%, 17.82%, and 3.45%, respectively. To evaluate the antioxidant effect, we used radical scavenging (DPPH and ABTS), reactive oxygen species (ROS) production measurement, and DNA oxidation assays. Total flavonoid and phenol contents were higher in the n-hexane fraction than in other fractions. The n-hexane fraction was more effective at scavenging free radicals than other fractions as assessed using DPPH and ABTS assays (P<0.05). The ROS production assay showed that all sea mustard fractions decreased H2O2 induced cellular ROS production compared to that seen in the control (P<0.05); however, the n-hexane fraction reduced cellular ROS production to a greater extent than the other fractions. Furthermore, the n-hexane fraction from Gultongmeori significantly inhibited genomic DNA oxidation. These results indicate that the antioxidant effect of sea mustard is associated with its high flavonoid and phenol content. This study proposes that processed food products supplemented with sea mustard can be developed as functional foods to promote health in the local population.

가드링 구조에서 전류 과밀 현상 억제를 위한 온-칩 정전기 보호 방법 (An On-chip ESD Protection Method for Preventing Current Crowding on a Guard-ring Structure)

  • 송종규;장창수;정원영;송인채;위재경
    • 대한전자공학회논문지SD
    • /
    • 제46권12호
    • /
    • pp.105-112
    • /
    • 2009
  • 본 논문에서는 $0.35{\mu}m$ Bipolar-CMOS-DMOS(BCD)공정으로 설계한 스마트 파워 IC 내의 가드링 코너 영역에서 발생하는 비정상적인 정전기 불량을 관측하고 이를 분석하였다. 칩내에서 래치업(Latch-up)방지를 위한 고전압 소자의 가드링에 연결되어 있는 Vcc단과 Vss 사이에 존재하는 기생 다이오드에서 발생한 과도한 전류 과밀 현상으로 정전기 내성 평가에서 Machine Model(MM)에서는 200V를 만족하지 못하는 불량이 발생하였다. Optical Beam Induced Resistance Charge(OBIRCH)와 Scanning Electronic Microscope(SEM)을 사용하여 불량이 발생한 지점을 확인하였고, 3D T-CAD 시뮬레이션으로 원인을 검증하였다. 시뮬레이션 결과를 통해 Local Oxidation(LOCOS)형태의 Isolation구조에서 과도한 정전기 전류가 흘렀을 때 코너영역의 형태에 따라 문제가 발생하는 것을 검증하였다. 이를 통해 정전기 내성이 개선된 가드링 코너 디자인 방법을 제안하였고 제품에 적용한 결과, MM 정전기 내성 평가에서 200V이상의 결과를 얻었다. 통계적으로 Test chip을 분석한 결과 기존의 결과 대비 20%이상 정전기 내성이 향상된 것을 확인 할 수 있었다. 이 결과를 바탕으로 BCD공정을 사용하는 칩 설계 시, 가드링 구조의 정전기 취약 지점을 Design Rule Check(DRC) 툴을 사용하여 자동으로 찾을 수 있는 설계 방법도 제안하였다. 본 연구에서 제안된 자동 검증방법을 사용하여, 동종 제품에 적용한 결과 24개의 에러를 검출하였으며, 수정 완료 제품은 동일한 정전기 불량은 발생하지 않았고 일반적인 정전기 내성 요구수준인 HBM 2000V / MM 200V를 만족하는 결과를 얻었다.

Muscle oxygenation, endocrine and metabolic regulation during low-intensity endurance exercise with blood flow restriction

  • Hwang, Hyejung;Mizuno, Sahiro;Kasai, Nobukazu;Kojima, Chihiro;Sumi, Daichi;Hayashi, Nanako;Goto, Kazushige
    • 운동영양학회지
    • /
    • 제24권2호
    • /
    • pp.30-37
    • /
    • 2020
  • [Purpose] The present study investigated the effect of endurance exercise with blood flow restriction (BFR) performed at either 25% maximal oxygen uptake (${\dot{V}}O_2$ max) or 40% ${\dot{V}}O_2$ max) on muscle oxygenation, energy metabolism, and endocrine responses. [Methods] Ten males were recruited in the present study. The subjects performed three trials: (1) endurance exercise at 40% ${\dot{V}}O_2$ max without BFR (NBFR40), (2) endurance exercise at 25% ${\dot{V}}O_2$ max with BFR (BFR25), and (3) endurance exercise at 40% ${\dot{V}}O_2$ max with BFR (BFR40). The exercises were performed for 15 min during which the pedaling frequency was set at 70 rpm. In BFR25 and BFR40, 2 min of pressure phase (equivalent to 160 mmHg) followed by 1 min of release phase were repeated five times (5 × 3 min) throughout 15 minutes of exercise. During exercise, muscle oxygenation and concentration of respiratory gases were measured. The blood samples were collected before exercise, immediately after 15 min of exercise, and at 15, 30, and 60 minutes after completion of exercise. [Results] Deoxygenated hemoglobin (deoxy-Hb) level during exercise was significantly higher with BFR25 and BFR40 than that with NBFR40. BFR40 showed significantly higher total-hemoglobin (total-Hb) than NBFR40 during 2 min of pressure phase. Moreover, exercise-induced lactate elevation and pH reduction were significantly augmented in BFR40, with concomitant increase in serum cortisol concentration after exercise. Carbohydrate (CHO) oxidation was significantly higher with BFR40 than that with NBFR40 and BFR25, whereas fat oxidation was lower with BFR40. [Conclusion] Deoxy-Hb and total Hb levels were significantly increased during 15 min of pedaling exercise in BFR25 and BFR40, indicating augmented local hypoxia and blood volume (blood perfusion) in the muscle. Moreover, low-and moderate-intensity exercise with BFR facilitated CHO oxidation.