• Title/Summary/Keyword: Local feature

Search Result 932, Processing Time 0.027 seconds

Human Activity Recognition Based on 3D Residual Dense Network

  • Park, Jin-Ho;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.12
    • /
    • pp.1540-1551
    • /
    • 2020
  • Aiming at the problem that the existing human behavior recognition algorithm cannot fully utilize the multi-level spatio-temporal information of the network, a human behavior recognition algorithm based on a dense three-dimensional residual network is proposed. First, the proposed algorithm uses a dense block of three-dimensional residuals as the basic module of the network. The module extracts the hierarchical features of human behavior through densely connected convolutional layers; Secondly, the local feature aggregation adaptive method is used to learn the local dense features of human behavior; Then, the residual connection module is applied to promote the flow of feature information and reduced the difficulty of training; Finally, the multi-layer local feature extraction of the network is realized by cascading multiple three-dimensional residual dense blocks, and use the global feature aggregation adaptive method to learn the features of all network layers to realize human behavior recognition. A large number of experimental results on benchmark datasets KTH show that the recognition rate (top-l accuracy) of the proposed algorithm reaches 93.52%. Compared with the three-dimensional convolutional neural network (C3D) algorithm, it has improved by 3.93 percentage points. The proposed algorithm framework has good robustness and transfer learning ability, and can effectively handle a variety of video behavior recognition tasks.

A Study on Vehicle Target Classification Method Using Both Shape and Local Features with Segmentation Reliability (표적분할 신뢰도 값 기반의 형태특징과 지역특징을 이용한 차량표적 분류기법 연구)

  • Yang, DongWon;Lee, Yonghun;Kwak, Dongmin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.40-47
    • /
    • 2017
  • To classify the vehicle targets automatically using thermal images, there are usually two main categories of feature extraction method, local and shape feature extraction methods. Since thermal images have less texture information than color images, the shape feature extraction method is useful when the segmentation results are correct. However, if there are some errors in target segmentation, the shape feature may contain some errors, then the classification accuracy can be decreased. To overcome these problems, in this paper, we propose the segmentation reliability estimation method for target classification. The segmentation reliability can be estimated by using the difference information of average intensities and edge energies between the target and the background area. The estimated segmentation reliability is applied in the decision level fusion method of classification results using both shape and local features. Experiment results using the thermal images of the vehicle targets (main battle tank, armored personnel carrier, military truck, and an estate car) show that the proposed classification method and the segmentation reliability estimation method have a good performance in classification accuracy.

Printer Identification Methods Using Global and Local Feature-Based Deep Learning (전역 및 지역 특징 기반 딥러닝을 이용한 프린터 장치 판별 기술)

  • Lee, Soo-Hyeon;Lee, Hae-Yeoun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • With the advance of digital IT technology, the performance of the printing and scanning devices is improved and their price becomes cheaper. As a result, the public can easily access these devices for crimes such as forgery of official and private documents. Therefore, if we can identify which printing device is used to print the documents, it would help to narrow the investigation and identify suspects. In this paper, we propose a deep learning model for printer identification. A convolutional neural network model based on local features which is widely used for identification in recent is presented. Then, another model including a step to calculate global features and hence improving the convergence speed and accuracy is presented. Using 8 printer models, the performance of the presented models was compared with previous feature-based identification methods. Experimental results show that the presented model using local feature and global feature achieved 97.23% and 99.98% accuracy respectively, which is much better than other previous methods in accuracy.

Human Action Recognition Based on An Improved Combined Feature Representation

  • Zhang, Ning;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1473-1480
    • /
    • 2018
  • The extraction and recognition of human motion characteristics need to combine biometrics to determine and judge human behavior in the movement and distinguish individual identities. The so-called biometric technology, the specific operation is the use of the body's inherent biological characteristics of individual identity authentication, the most noteworthy feature is the invariance and uniqueness. In the past, the behavior recognition technology based on the single characteristic was too restrictive, in this paper, we proposed a mixed feature which combined global silhouette feature and local optical flow feature, and this combined representation was used for human action recognition. And we will use the KTH database to train and test the recognition system. Experiments have been very desirable results.

Object Cataloging Using Heterogeneous Local Features for Image Retrieval

  • Islam, Mohammad Khairul;Jahan, Farah;Baek, Joong Hwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4534-4555
    • /
    • 2015
  • We propose a robust object cataloging method using multiple locally distinct heterogeneous features for aiding image retrieval. Due to challenges such as variations in object size, orientation, illumination etc. object recognition is extraordinarily challenging problem. In these circumstances, we adapt local interest point detection method which locates prototypical local components in object imageries. In each local component, we exploit heterogeneous features such as gradient-weighted orientation histogram, sum of wavelet responses, histograms using different color spaces etc. and combine these features together to describe each component divergently. A global signature is formed by adapting the concept of bag of feature model which counts frequencies of its local components with respect to words in a dictionary. The proposed method demonstrates its excellence in classifying objects in various complex backgrounds. Our proposed local feature shows classification accuracy of 98% while SURF,SIFT, BRISK and FREAK get 81%, 88%, 84% and 87% respectively.

Online Social Capital Analysis on the Yeungnam Local Presses : Website and Social Media (영남지역 언론사의 온라인 사회자본 분석 : 웹사이트와 소셜미디어를 중심으로)

  • Kim, Ji Young;Ha, Young Ji;Park, Han Woo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.4
    • /
    • pp.73-85
    • /
    • 2013
  • This study examines the online social capital of local press using the website and social media. Moreover, the paper respectively visualizes web feature as Web 1.0 and social feature analysis as Web 2.0 by applying correspondence analysis. For data, the study analyzes 10 representative local press in Yeungnam areas. To collect the data, two coders coded web features from the websites and we employed NodeXL, an open-source software tool, for social media data. The results reveal that local websites expend online social capital using social media account. Especially, the social features of local presses attach importance to Twitter as the main press keep the well-balance use among all platforms.

Local Linear Transform and New Features of Histogram Characteristic Functions for Steganalysis of Least Significant Bit Matching Steganography

  • Zheng, Ergong;Ping, Xijian;Zhang, Tao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.4
    • /
    • pp.840-855
    • /
    • 2011
  • In the context of additive noise steganography model, we propose a method to detect least significant bit (LSB) matching steganography in grayscale images. Images are decomposed into detail sub-bands with local linear transform (LLT) masks which are sensitive to embedding. Novel normalized characteristic function features weighted by a bank of band-pass filters are extracted from the detail sub-bands. A suboptimal feature set is searched by using a threshold selection algorithm. Extensive experiments are performed on four diverse uncompressed image databases. In comparison with other well-known feature sets, the proposed feature set performs the best under most circumstances.

Discriminative Training of Sequence Taggers via Local Feature Matching

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.209-215
    • /
    • 2014
  • Sequence tagging is the task of predicting frame-wise labels for a given input sequence and has important applications to diverse domains. Conventional methods such as maximum likelihood (ML) learning matches global features in empirical and model distributions, rather than local features, which directly translates into frame-wise prediction errors. Recent probabilistic sequence models such as conditional random fields (CRFs) have achieved great success in a variety of situations. In this paper, we introduce a novel discriminative CRF learning algorithm to minimize local feature mismatches. Unlike overall data fitting originating from global feature matching in ML learning, our approach reduces the total error over all frames in a sequence. We also provide an efficient gradient-based learning method via gradient forward-backward recursion, which requires the same computational complexity as ML learning. For several real-world sequence tagging problems, we empirically demonstrate that the proposed learning algorithm achieves significantly more accurate prediction performance than standard estimators.

Local Binary Feature and Adaptive Neuro-Fuzzy based Defect Detection in Solar Wafer Surface (지역적 이진 특징과 적응 뉴로-퍼지 기반의 솔라 웨이퍼 표면 불량 검출)

  • Ko, JinSeok;Rheem, JaeYeol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.57-61
    • /
    • 2013
  • This paper presents adaptive neuro-fuzzy inference based defect detection method for various defect types, such as micro-crack, fingerprint and contamination, in heterogeneously textured surface of polycrystalline solar wafers. Polycrystalline solar wafer consists of various crystals so the surface of solar wafer shows heterogeneously textures. Because of this property the visual inspection of defects is very difficult. In the proposed method, we use local binary feature and fuzzy reasoning for defect detection. Experimental results show that our proposed method achieves a detection rate of 80%~100%, a missing rate of 0%~20% and an over detection (overkill) rate of 9%~21%.

Texture Image Retrieval Using DTCWT-SVD and Local Binary Pattern Features

  • Jiang, Dayou;Kim, Jongweon
    • Journal of Information Processing Systems
    • /
    • v.13 no.6
    • /
    • pp.1628-1639
    • /
    • 2017
  • The combination texture feature extraction approach for texture image retrieval is proposed in this paper. Two kinds of low level texture features were combined in the approach. One of them was extracted from singular value decomposition (SVD) based dual-tree complex wavelet transform (DTCWT) coefficients, and the other one was extracted from multi-scale local binary patterns (LBPs). The fusion features of SVD based multi-directional wavelet features and multi-scale LBP features have short dimensions of feature vector. The comparing experiments are conducted on Brodatz and Vistex datasets. According to the experimental results, the proposed method has a relatively better performance in aspect of retrieval accuracy and time complexity upon the existing methods.