• Title/Summary/Keyword: Local equilibrium

Search Result 227, Processing Time 0.022 seconds

Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes

  • Tounsi, Abdelouahed;Benguediab, Soumia;Adda Bedia, El Abbas;Semmah, Abdelwahed;Zidour, Mohamed
    • Advances in nano research
    • /
    • v.1 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • The thermal buckling properties of double-walled carbon nanotubes (DWCNTs) are studied using nonlocal Timoshenko beam model, including the effects of transverse shear deformation and rotary inertia. The DWCNTs are considered as two nanotube shells coupled through the van der Waals interaction between them. The geometric nonlinearity is taken into account, which arises from the mid-plane stretching. Considering the small-scale effects, the governing equilibrium equations are derived and the critical buckling temperatures under uniform temperature rise are obtained. The results show that the critical buckling temperature can be overestimated by the local beam model if the nonlocal effect is overlooked for long nanotubes. In addition, the effect of shear deformation and rotary inertia on the buckling temperature is more obvious for the higher-order modes. The investigation of the thermal buckling properties of DWCNTs may be used as a useful reference for the application and the design of nanostructures in which DWCNTs act as basic elements.

Structural Layout Design for Concrete Structures Based on the Repeated Control Method by Using Micro Lattice Truss Model (마이크로 격자트러스모델을 이용한 반복강성제어법에 의한 콘크리트 구조형태의 최적화)

  • Choi, Ik-Chang;Ario, Ichiro
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.705-712
    • /
    • 2008
  • This study carried out simulation for structural layout design for concrete structures by using the models of the ground structure method. The micro lattice truss is modeled as assemblage of a number of unit cells. The progress of analysis repeat to undergo finite element analysis to feed-back results of stress to the stiffness of each member. Through the repeated this analysis, truss model is represented to form the topological materials and the structural shape with the use of the local stress condition without mathematical optimum tools. It is successful to analyse the shape-layout problem as numerical samples on the lattice truss model.

Analytical solution to the conduction-dominated solidification of a binary mixture (열전도에 의해 지배되는 이성분혼합물의 응고문제에 대한 해석해)

  • Jeong, Jae-Dong;Yu, Ho-Seon;No, Seung-Tak;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3655-3665
    • /
    • 1996
  • An analytical solution is presented for the conduction-dominated solidification of a binary mixture in a semi-infinite medium. The present approach differs from that of other solution by these four characteristics. (1) Solid fraction is determined from the phase diagram, (2) thermophysical properties in mushy zone are weighted according to the local solid fraction, (3) non-equilibrium solidification can be simulated and (4) the cooling condition of under-eutectic temperature can be simulated. Up to now, almost all analyses are based on the assumption of constant properties in mushy zone and solid fraction linearly with temperature or length. The validation for these assumptions, however, shows that serious error is found except some special cases. The influence of microscopic model on the macroscopic temperature profile is very small and can be ignored. But the solid fraction and average solid concentration which directly influence the quality of materials are drastically changed by the microscopic models. An approximate solution using the method of weighted residuals is also introduced and shows good agreement with the analytical solution. All calculations are performed for NH$_{4}$Cl-H$_{2}$O and Al-Cu system.

Operating Parameters for Glutamic Acid Crystallization in Displacement Ion Exchange Chromatography

  • Lee, Kisay
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.117-121
    • /
    • 1997
  • Glutamic acid can be crystallized inside cation exchange column when displacer NaOH concentration is high enough to concentrate displaced glutamic acid beyond its solubility limit. Resulting crystal layer of glutamic acid was moved with liquid phase through the column, and thus could be eluted from the column and recovered in fraction collector. For the purpose of enhancing crystal recovery, effects of operating parameters on the crystal formation were investigated. The increase in the degree of crosslinking of resin favored crystal recovery because of its low degree of swelling. Higher concentration of displacer NaOH was advantageous. If NaOH concentration is too high, however, crystal recovery was lowered due to the solubility-enhancing effects of high pH and ionic strength. The decrease of mobile phase flow rate enhanced crystal recovery because enough time to attain local equilibrium could be provided, but film diffusion would control the overall crystal formation with extremely low flow rate. Lower temperature reduced solubility of glutamic acid and thus favored crystal formation unless the rate of ion exchange was severely reduced. The ion exchange operated by displacement mode coupled with crystallization was advantageous in reducing the burden of further purification steps and in preventing purity-loss resulted from overlapping between adjacent bands.

  • PDF

Measurement of EUV (Extreme Ultraviolet) and electron temperature in a hypocycloidal pinch device for EUV lithography

  • Lee, Sung-Hee;Hong, Young-June;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.108-108
    • /
    • 2010
  • We have generated Ne-Xe plasma in dense plasma focus device with hypocycloidal pinch for extreme ultraviolet (EUV) lithography and investigated an electron temperature. We have applied an input voltage 4.5 kV to the capacitor bank of 1.53 uF and the diode chamber has been filled with Ne-Xe(30%) gas in accordance with pressure. If we assumed that the focused plasma regions satisfy the local thermodynamic equilibrium (LTE) conditions, the electron temperature of the hypocycloidal pinch plasma focus could be obtained by the optical emission spectroscopy (OES). The electron temperature has been measured by Boltzmann plot. The light intensity is proportion to the Bolzman factor. We have been measured the electron temperature by observation of relative Ne-Xe intensity. The EUV emission signal whose wavelength is about 6~16 nm has been detected by using a photo-detector (AXUV-100 Zr/C, IRD) and the line intensity has been detected by using a HR4000CG Composite-grating Spectrometer.

  • PDF

The Impact of R&D on the Singaporean Economy

  • Ho, Yuen-Ping;Wong, Poh-Kam
    • STI Policy Review
    • /
    • v.8 no.1
    • /
    • pp.1-22
    • /
    • 2017
  • There has been a pronounced increase in research and development (R&D) expenditure in Singapore over the last two decades, with government spending accounting for a sizeable share. This increase has been spurred by public policy emphasis on research and innovation as engines of economic growth. This paper analyses the impact of R&D on economic performance in Singapore from 1978 to 2012 through the use of time series analysis. The Cobb-Douglas based analysis shows a long-run equilibrium relationship between Total Factor Productivity (TFP) and R&D investments. We found that the short-run productivity of R&D in Singapore is comparable to smaller advanced economies in the Organisation for Economic Co-operation and Development (OECD). However, in terms of long-run R&D productivity, Singapore lags slightly behind the smaller OECD nations and far behind the G7 countries. This suggests leakage of value capture and low absorptive capacity in local firms. Possibility of productivity improvements induced by policy changes in the 1990s was considered, but no evidence of significant structural breaks was found. Lastly, Granger causality analysis reveals that public sector R&D augments private sector R&D capital, thus playing an important role in generating externalities and spillover effects. Policy implications and lessons for other middle-income countries are discussed.

The Reinforcement Method and Stability Analysis of Cut Slopes (절토사면의 안정해석과 보강방법)

  • 지인택;이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.1
    • /
    • pp.112-121
    • /
    • 1997
  • The aim of this study was to analyze the slope stability relating to the failure of cut slopes and the characteristics of stress-strain relations obtained by limit equilibrium method, finite element method, and stereographic projection method for the reinforced cut slopes. The following conclusions were made : 1.To use stereographic projection method led to little possibility to take the toppling and wedge failure while to use the other methods led to the failure. It was recommended to reduce the slope inclination from 1:1 to 1: 1.5~1 :1.8 and adopt coir mesh method to protect the slope surface. position with the horizontal displacement after final excavation moved to the excavation base. The maximum shear strain values concentrated at the excavation base indicated the possibility to induce the local failure. 3. It was recommended that the slope inclination for blast rock with the slope height larger than l0m was 1: 0.5, 1:1, and 1: 1~1 :1.5 for hard rocks, soft and ordinary rocks, and ripping and soils, respectively. 4. Berm width criteria for blast rock with the slope height larger than l0m were recommended as follow : 2~3m per 20m slope height for hard rocks, 1 ~2m per l0m slope height for soft and ordinary rocks, 1 ~ l.5m per 5m slope height for ripping and soils.

  • PDF

Edge Flame : Why Is It So Hot in Combustion?

  • Kim, Jong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.2
    • /
    • pp.19-27
    • /
    • 2000
  • A turbulent combustion model, based on edge flame dynamics, is discussed in order to predict global extinction of turbulent flames. The model is applicable to the broken flamelet regime of turbulent combustion, in which global extinction of turbulent flame is achieved by gradual expansion of flame holes. The edge flame dynamics is the key mechanism to describe the flame hole expansion or contraction. For flames with Lewis numbers near unity, there is a $Damk{\ddot{o}}hler$ number, namely the crossover $Damk{\ddot{o}}hler$ number, at which edge flame changes its direction of propagation. The parametric region between the quasi-steady extinction condition and the edge-flame crossover condition is a metastable region, in that flames without edge can stay in their burning states while flames with edge have to retract to expand quenching holes. Using the above properties of edge flame, Hartley and Dold proposed a Lagrangian hole dynamics, which allows us to simulate transient variation of quenching holes. In their model, each stoichiometric surface is subjected to a random sequence of scalar dissipation rate compatible to the equilibrium turbulence. Then, each stoichiometric surface will evolve, according to the combustion map, dependent on the scalar dissipation rate and existence of flame edge, If all the burning surfaces are annihilated, the event can be declared as a global extinction. The consequence obtained from the above model also can be used as a subgrid model to determine local extinction occurring in a calculation grid.

  • PDF

The Rubber Pricing Model: Theory and Evidence

  • SRISUKSAI, Pithak
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.11
    • /
    • pp.13-22
    • /
    • 2020
  • This research explores the appropriate rubber pricing model and the consistent empirical evidence. This model has been derived from the utility function and firm profit-maximization model of commodity goods. The finding shows that the period t - 1 affects expected commodity price and expected profit of commodity production. In fact, a change in the world price of rubber in the past period led to a change in the expected price of rubber in the short run which influenced the expected rubber profit. As a result, the past-period free on board price has an entirety effect on expected farm price of rubber given an exchange rate. In addition, the rubber pricing model indicates that the profit of local farmer on rubber plant depends solely on the world price of rubber in the short run in case of Thailand. In an empirical study, it was found that a change in the price of ribbed smoke sheet 3 in Singapore Commodity Exchange significantly and positively determined the fluctuation of rubber price at the farm gate in Thailand which was consistent with the behavior of the Thai farmers. Both prices are also cointegrated in the long run. That is, the result states that the VECM is an appropriated pricing model for forecasting the farm price in Thailand.

Numerical Study on Operating Parameters and Shapes of a Steam Reformer for Hydrogen Production from Methane (천연가스로부터 수소를 생산하기 위한 수증기 개질기의 작동조건과 형상에 대한 수치해석 연구)

  • Park, Joong-Uen;Lee, Shin-Ku;Lim, Sung-Kwang;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.60-68
    • /
    • 2009
  • The steam reformer for hydrogen production from methane is studied by a numerical method. Langmuir- Hinshelwood model is incorporated for catalytic surface reactions, and the pseudo-homogeneous model is used to take into account local equilibrium phenomena between a catalyst and bulk gas. Dominant chemical reactions are Steam Reforming (SR) reaction, Water-Gas Shift (WGS) reaction, and Direct Steam Reforming (DSR) reaction. The numerical results are validated with experimental results at the same operating conditions. Using the validated code, parametric study has been numerically performed in view of the steam reformer performance. As increasing a wall temperature, the fuel conversion increases due to the high heat transfer rate. When Steam to Carbon Ratio (SCR) increases, the concentration of carbon monoxide decreases since WGS reaction becomes more active. When increasing Gas Hourly Space Velocity (GHSV), the fuel conversion decreases due to the heat transfer limitation and the low residence time. The reactor shape effects are also investigated. The length and radius of cylindrical reactors are changed at the same catalyst volume. The longer steam reformer is, the better steam reformer performs. However, system energy efficiency decreases due to the large pressure drop.