• Title/Summary/Keyword: Local ensemble prediction system

Search Result 19, Processing Time 0.025 seconds

A Monitoring System of Ensemble Forecast Sensitivity to Observation Based on the LETKF Framework Implemented to a Global NWP Model (앙상블 기반 관측 자료에 따른 예측 민감도 모니터링 시스템 구축 및 평가)

  • Lee, Youngsu;Shin, Seoleun;Kim, Junghan
    • Atmosphere
    • /
    • v.30 no.2
    • /
    • pp.103-113
    • /
    • 2020
  • In this study, we analyzed and developed the monitoring system in order to confirm the effect of observations on forecast sensitivity on ensemble-based data assimilation. For this purpose, we developed the Ensemble Forecast Sensitivity to observation (EFSO) monitoring system based on Local Ensemble Transform Kalman Filter (LETKF) system coupled with Korean Integrated Model (KIM). We calculated 24 h error variance of each of observations and then classified as beneficial or detrimental effects. In details, the relative rankings were according to their magnitude and analyzed the forecast sensitivity by region for north, south hemisphere and tropics. We performed cycle experiment in order to confirm the EFSO result whether reliable or not. According to the evaluation of the EFSO monitoring, GPSRO was classified as detrimental observation during the specified period and reanalyzed by data-denial experiment. Data-denial experiment means that we detect detrimental observation using the EFSO and then repeat the analysis and forecast without using the detrimental observations. The accuracy of forecast in the denial of detrimental GPSRO observation is better than that in the default experiment using all of the GPSRO observation. It means that forecast skill score can be improved by not assimilating observation classified as detrimental one by the EFSO monitoring system.

Effects of Resolution, Cumulus Parameterization Scheme, and Probability Forecasting on Precipitation Forecasts in a High-Resolution Limited-Area Ensemble Prediction System

  • On, Nuri;Kim, Hyun Mee;Kim, SeHyun
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • v.54 no.4
    • /
    • pp.623-637
    • /
    • 2018
  • This study investigates the effects of horizontal resolution, cumulus parameterization scheme (CPS), and probability forecasting on precipitation forecasts over the Korean Peninsula from 00 UTC 15 August to 12 UTC 14 September 2013, using the limited-area ensemble prediction system (LEPS) of the Korea Meteorological Administration. To investigate the effect of resolution, the control members of the LEPS with 1.5- and 3-km resolution were compared. Two 3-km experiments with and without the CPS were conducted for the control member, because a 3-km resolution lies within the gray zone. For probability forecasting, 12 ensemble members with 3-km resolution were run using the LEPS. The forecast performance was evaluated for both the whole study period and precipitation cases categorized by synoptic forcing. The performance of precipitation forecasts using the 1.5-km resolution was better than that using the 3-km resolution for both the total period and individual cases. The result of the 3-km resolution experiment with the CPS did not differ significantly from that without it. The 3-km ensemble mean and probability matching (PM) performed better than the 3-km control member, regardless of the use of the CPS. The PM complemented the defect of the ensemble mean, which better predicts precipitation regions but underestimates precipitation amount by averaging ensembles, compared to the control member. Further, both the 3-km ensemble mean and PM outperformed the 1.5-km control member, which implies that the lower performance of the 3-km control member compared to the 1.5-km control member was complemented by probability forecasting.

An Improvement Study on the Hydrological Quantitative Precipitation Forecast (HQPF) for Rainfall Impact Forecasting (호우 영향예보를 위한 수문학적 정량강우예측(HQPF) 개선 연구)

  • Yoon Hu Shin;Sung Min Kim;Yong Keun Jee;Young-Mi Lee;Byung-Sik Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.4
    • /
    • pp.87-98
    • /
    • 2022
  • In recent years, frequent localized heavy rainfalls, which have a lot of rainfall in a short period of time, have been increasingly causing flooding damages. To prevent damage caused by localized heavy rainfalls, Hydrological Quantitative Precipitation Forecast (HQPF) was developed using the Local ENsemble prediction System (LENS) provided by the Korea Meteorological Administration (KMA) and Machine Learning and Probability Matching (PM) techniques using Digital forecast data. HQPF is produced as information on the impact of heavy rainfall to prepare for flooding damage caused by localized heavy rainfalls, but there is a tendency to overestimate the low rainfall intensity. In this study, we improved HQPF by expanding the period of machine learning data, analyzing ensemble techniques, and changing the process of Probability Matching (PM) techniques to improve predictive accuracy and over-predictive propensity of HQPF. In order to evaluate the predictive performance of the improved HQPF, we performed the predictive performance verification on heavy rainfall cases caused by the Changma front from August 27, 2021 to September 3, 2021. We found that the improved HQPF showed a significantly improved prediction accuracy for rainfall below 10 mm, as well as the over-prediction tendency, such as predicting the likelihood of occurrence and rainfall area similar to observation.

Uncertainty investigation and mitigation in flood forecasting

  • Nguyen, Hoang-Minh;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.155-155
    • /
    • 2018
  • Uncertainty in flood forecasting using a coupled meteorological and hydrological model is arisen from various sources, especially the uncertainty comes from the inaccuracy of Quantitative Precipitation Forecasts (QPFs). In order to improve the capability of flood forecast, the uncertainty estimation and mitigation are required to perform. This study is conducted to investigate and reduce such uncertainty. First, ensemble QPFs are generated by using Monte - Carlo simulation, then each ensemble member is forced as input for a hydrological model to obtain ensemble streamflow prediction. Likelihood measures are evaluated to identify feasible member. These members are retained to define upper and lower limits of the uncertainty interval and assess the uncertainty. To mitigate the uncertainty for very short lead time, a blending method, which merges the ensemble QPFs with radar-based rainfall prediction considering both qualitative and quantitative skills, is proposed. Finally, blending bias ratios, which are estimated from previous time step, are used to update the members over total lead time. The proposed method is verified for the two flood events in 2013 and 2016 in the Yeonguol and Soyang watersheds that are located in the Han River basin, South Korea. The uncertainty in flood forecasting using a coupled Local Data Assimilation and Prediction System (LDAPS) and Sejong University Rainfall - Runoff (SURR) model is investigated and then mitigated by blending the generated ensemble LDAPS members with radar-based rainfall prediction that uses McGill algorithm for precipitation nowcasting by Lagrangian extrapolation (MAPLE). The results show that the uncertainty of flood forecasting using the coupled model increases when the lead time is longer. The mitigation method indicates its effectiveness for mitigating the uncertainty with the increases of the percentage of feasible member (POFM) and the ratio of the number of observations that fall into the uncertainty interval (p-factor).

  • PDF

Prediction and Analysis of PM2.5 Concentration in Seoul Using Ensemble-based Model (앙상블 기반 모델을 이용한 서울시 PM2.5 농도 예측 및 분석)

  • Ryu, Minji;Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1191-1205
    • /
    • 2022
  • Particulate matter(PM) among air pollutants with complex and widespread causes is classified according to particle size. Among them, PM2.5 is very small in size and can cause diseases in the human respiratory tract or cardiovascular system if inhaled by humans. In order to prepare for these risks, state-centered management and preventable monitoring and forecasting are important. This study tried to predict PM2.5 in Seoul, where high concentrations of fine dust occur frequently, using two ensemble models, random forest (RF) and extreme gradient boosting (XGB) using 15 local data assimilation and prediction system (LDAPS) weather-related factors, aerosol optical depth (AOD) and 4 chemical factors as independent variables. Performance evaluation and factor importance evaluation of the two models used for prediction were performed, and seasonal model analysis was also performed. As a result of prediction accuracy, RF showed high prediction accuracy of R2 = 0.85 and XGB R2 = 0.91, and it was confirmed that XGB was a more suitable model for PM2.5 prediction than RF. As a result of the seasonal model analysis, it can be said that the prediction performance was good compared to the observed values with high concentrations in spring. In this study, PM2.5 of Seoul was predicted using various factors, and an ensemble-based PM2.5 prediction model showing good performance was constructed.

Development of the Korean Peninsula-Korean Aviation Turbulence Guidance (KP-KTG) System Using the Local Data Assimilation and Prediction System (LDAPS) of the Korea Meteorological Administration (KMA) (기상청 고해상도 지역예보모델을 이용한 한반도 영역 한국형 항공난류 예측시스템(한반도-KTG) 개발)

  • Lee, Dan-Bi;Chun, Hye-Yeong
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.367-374
    • /
    • 2015
  • Korean Peninsula has high potential for occurrence of aviation turbulence. A Korean aviation Turbulence Guidance (KTG) system focused on the Korean Peninsula, named Korean-Peninsula KTG (KP-KTG) system, is developed using the high resolution (horizontal grid spacing of 1.5 km) Local Data Assimilation and Prediction System (LDAPS) of the Korea Meteorological Administration (KMA). The KP-KTG system is constructed first by selection of 15 best diagnostics of aviation turbulence using the method of probability of detection (POD) with pilot reports (PIREPs) and the LDAPS analysis data. The 15 best diagnostics are combined into an ensemble KTG predictor, named KP-KTG, with their weighting scores computed by the values of area under curve (AUC) of each diagnostics. The performance of the KP-KTG, represented by AUC, is larger than 0.84 in the recent two years (June 2012~May 2014), which is very good considering relatively small number of PIREPs. The KP-KTG can provide localized turbulence forecasting in Korean Peninsula, and its skill score is as good as that of the operational-KTG conducting in East Asia.

Optimizing Hydrological Quantitative Precipitation Forecast (HQPF) based on Machine Learning for Rainfall Impact Forecasting (호우 영향예보를 위한 머신러닝 기반의 수문학적 정량강우예측(HQPF) 최적화 방안)

  • Lee, Han-Su;Jee, Yongkeun;Lee, Young-Mi;Kim, Byung-Sik
    • Journal of Environmental Science International
    • /
    • v.30 no.12
    • /
    • pp.1053-1065
    • /
    • 2021
  • In this study, the prediction technology of Hydrological Quantitative Precipitation Forecast (HQPF) was improved by optimizing the weather predictors used as input data for machine learning. Results comparison was conducted using bias and Root Mean Square Error (RMSE), which are predictive accuracy verification indicators, based on the heavy rain case on August 21, 2021. By comparing the rainfall simulated using the improved HQPF and the observed accumulated rainfall, it was revealed that all HQPFs (conventional HQPF and improved HQPF 1 and HQPF 2) showed a decrease in rainfall as the lead time increased for the entire grid region. Hence, the difference from the observed rainfall increased. In the accumulated rainfall evaluation due to the reduction of input factors, compared to the existing HQPF, improved HQPF 1 and 2 predicted a larger accumulated rainfall. Furthermore, HQPF 2 used the lowest number of input factors and simulated more accumulated rainfall than that projected by conventional HQPF and HQPF 1. By improving the performance of conventional machine learning despite using lesser variables, the preprocessing period and model execution time can be reduced, thereby contributing to model optimization. As an additional advanced method of HQPF 1 and 2 mentioned above, a simulated analysis of the Local ENsemble prediction System (LENS) ensemble member and low pressure, one of the observed meteorological factors, was analyzed. Based on the results of this study, if we select for the positively performing ensemble members based on the heavy rain characteristics of Korea or apply additional weights differently for each ensemble member, the prediction accuracy is expected to increase.

Application Analysis of Short-term Rainfall Forecasting Model according to Bias Correlation in Rainfall Ensemble Data (강우앙상블자료 편의보정에 따른 단기강우예측모델의 적용성 분석)

  • Lee, Sanghyup;Seong, Yeon-Jeong;Bastola, Shiksha;Choo, InnKyo;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.119-119
    • /
    • 2019
  • 최근 기후변화와 이상기후의 영향으로 국지성 호우 및 가뭄, 홍수, 태풍 등 재해 발생 규모가 커지고 그 빈도 또한 많아지고 있다. 이러한 자연재해 및 이상현상에 대한 피해를 예방하고 빠르게 대처하기 위해서는 정확한 강우량 추정 및 강우의 시간적 예측이 필요하다. 이러한 강우의 불확실성을 해결하기 위해서 기상청 등에서는 단일 수치예보가 가지는 결정론적인 예측의 한계를 보완한 초기조건, 물리과정, 경계조건 등이 다른 여러 개의 모델을 수행하여, 확률적으로 미래를 예측하는 앙상블 예측 시스템을 예보기술에 응용하고 있으며 기존 수치모델의 정보와 예보 불확실성에 대한 정보를 동시에 제공하고 있다. 그러나 다양한 자연조건에 대한 불완전한 물리적 이해와 연산 능력 등의 한계로 높은 불확실성이 내포되어 있으므로 불확실성을 최소화하기 위한 편의보정이 수행될 필요가 있다. 강우분석의 적용 이전에 해당 자료의 타당성과 신뢰도의 분석이 필요하다. 본 연구에서는 LENS(Local ENsemble prediction System) 예측값과 시강우 관측값을 단기예측모델에 맞추어 3시간 누적하여 비교하였다. 비교 기간은 호우가 집중되는 2016년 10월로 선정하였으며 대상지역은 울산중구로 선정하였다. LENS를 대상 지역의 관측소 지점값과 행정구역 면적값을 따로 추출한 후, 불확실성을 최소화하기 위해 활용되고 있는 CF 기법과 QM 기법을 이용하여 LENS 모델을 재가공하고 이에 따른 편의보정 기법에 따른 LENS 모델을 과거의 실제강우 관측값과의 비교분석을 이용해 적용성을 검토 및 평가하였다.

  • PDF

Optimization of the Vertical Localization Scale for GPS-RO Data Assimilation within KIAPS-LETKF System (KIAPS 앙상블 자료동화 시스템을 이용한 GPS 차폐자료 연직 국지화 규모 최적화)

  • Jo, Youngsoon;Kang, Ji-Sun;Kwon, Hataek
    • Atmosphere
    • /
    • v.25 no.3
    • /
    • pp.529-541
    • /
    • 2015
  • Korea Institute of Atmospheric Prediction System (KIAPS) has been developing a global numerial prediction model and data assimilation system. We has implemented LETKF (Local Ensemble Transform Kalman Filter, Hunt et al., 2007) data assimilation system to NCAR CAM-SE (National Center for Atmospheric Research Community Atmosphere Model with Spectral Element dynamical core, Dennis et al., 2012) that has cubed-sphere grid, known as the same grid system of KIAPS Integrated Model (KIM) now developing. In this study, we have assimilated Global Positioning System Radio Occultation (GPS-RO) bending angle measurements in addition to conventional data within ensemble-based data assimilation system. Before assimilating bending angle data, we performed a vertical unit conversion. The information of vertical localization for GPS-RO data is given by the unit of meter, but the vertical localization method in the LETKF system is based on pressure unit. Therefore, with a clever conversion of the vertical information, we have conducted experiments to search for the best vertical localization scale on GPS-RO data under the Observing System Simulation Experiments (OSSEs). As a result, we found the optimal setting of vertical localization for the GPS-RO bending angle data assimilation. We plan to apply the selected localization strategy to the LETKF system implemented to KIM which is expected to give better analysis of GPS-RO data assimilation due to much higher model top.

Investigation of Analysis Effects of ASCAT Data Assimilation within KIAPS-LETKF System (앙상블 자료동화 시스템에서 ASCAT 해상풍 자료동화가 분석장에 미치는 효과 분석)

  • Jo, Youngsoon;Lim, Sujeong;Kwon, In-Hyuk;Han, Hyun-Jun
    • Atmosphere
    • /
    • v.28 no.3
    • /
    • pp.263-272
    • /
    • 2018
  • The high-resolution ocean surface wind vector produced by scatterometer was assimilated within the Local Ensemble Transform Kalman Filter (LETKF) in Korea Institute of Atmospheric Prediction Systems (KIAPS). The Advanced Scatterometer (ASCAT) on Metop-A/B wind data was processed in the KIAPS Package for Observation Processing (KPOP), and a module capable of processing surface wind observation was implemented in the LETKF system. The LETKF data assimilation cycle for evaluating the performance improvement due to ASCAT observation was carried out for approximately 20 days from June through July 2017 when Typhoon Nepartak was present. As a result, we have found that the performance of ASCAT wind vector has a clear and beneficial effect on the data assimilation cycle. It has reduced analysis errors of wind, temperature, and humidity, as well as analysis errors of lower troposphere wind. Furthermore, by the assimilation of the ASCAT wind observation, the initial condition of the model described the typhoon structure more accurately and improved the typhoon track prediction skill. Therefore, we can expect the analysis field of LETKF will be improved if the Scatterometer wind observation is added.