• Title/Summary/Keyword: Local corrosion

Search Result 245, Processing Time 0.021 seconds

A Study on the Flexural Behavior of Plate Girder Bridge Decks Using a Macro-Element (매크로 요소를 사용한 판형교 바닥판의 휨거동 해석)

  • 최진유;양기재;박남회;강영종
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.13-24
    • /
    • 2000
  • Current specification prescribes that upper and lower reinforcement mat is required in the same amount to resist negative and positive moment in bridge decks. But the negative moment is much smaller than positive moment because the actual behavior of decks consists of local deflection of slab and global deflection of girder. From this study, the analysis method based on harmonic analysis and slope-deflection method was developed and verified by finite element method. The negative moment, obtained from this method, were smaller than those computed based on the KHBDC specifications as much as 40∼50% in the middle of bridge. The amount of reduction of the design negative moment was shown herein to be dependent on variable parameters as shape factor(S/L) of slab, relative stiffness ratio of girder and deck slab, and so on. This investigations indicate that the upper reinforcement mat to resist negative moment can be removed. But further experimental study is required to consider durability and serviceability. From this new design concept, the construction expense can be reduced and the problem of decreasing durability resulting from corrosion of upper reinforcement steel settled.

  • PDF

Technique for the Measurement of Crack Widths at Notched / Unnotched Regions and Local Strains (콘크리트의 노치 및 비노치 구역에서의 균열폭 및 국부 변형률 정밀 측정기법)

  • Choi, Sok-Hwan;Lim, Bub-Mook;Oh, Chang-Kook;Joh, Chang-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.205-214
    • /
    • 2012
  • Crack widths play an important role in the serviceability limit state. When crack widths are controlled sufficiently, the reinforcement corrosion can be reduced using only existing concrete cover thickness due to low permeability in the region of finely distributed hair-cracks. Thus, the knowledge about the tensile crack opening is essential in designing more durable concrete structures. Therefore, numerous researches related to the topic have been performed. Nevertheless accurate measurement of a crack width is not a simple task due to several reasons such as unknown potential crack formation location and crack opening damaging strain gages. In order to overcome these difficulties and measure precise crack widths, a displacement measurement system was developed using digital image correlation. Accuracy calibration tests gave an average measurement error of 0.069 pixels and a standard deviation of 0.050 pixels. Direct tensile test was performed using ultra high performance concrete specimens. Crack widths at both notched and unnotched locations were measured and compared with clip-in gages at various loading steps to obtain crack opening profile. Tensile deformation characteristics of concrete were well visualized using displacement vectors and full-field displacement contour maps. The proposed technique made it possible to measure crack widths at arbitrary locations, which is difficult with conventional gages such as clip-in gages or displacement transducers.

Structural Safety Assessment of Tie-down for Securing Helicopter (헬리콥터 고정용 안전장치 구조 안전성 평가)

  • Myung Su Yi;Kwang-Chul Seo;Joo Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.372-379
    • /
    • 2023
  • International oil prices are expected to increase from $85 a barrel this year to up to $100 a barrel in the second half of the year; this is likely to increase orders for offshore plants in the global market. One main characteristic of offshore plants is that a large helideck is located on the top side, and aluminum alloys are used as the basic material of the structure for weight reduction and corrosion resistance. Shipowners are increasing the size of helicopters to quickly evacuate lives in the event of an emergency, and the safety use load of devices that can stably secure helicopters to the deck is also required to increase. Owing to the nature of the aluminum material, the structural strength caused by welding is greatly reduced; therefore, the fixing device must be designed by embedding it in the deck and fixing it with bolts. In this study, a model applying aluminum alloy 6082-T6 was developed to develop a helicopter fastening device that can be used for large helidecks (diameter = 28 m). The developed item was verified through nonlinear structural strength calculation to satisfy the load used for the actual fastening condition. The load condition with a 45° showed a lower ultimate strength than the 90° case owing to local plastic collapse. The nonlinear structural collapse behavior showed a result similar to that of the experimental test. The main contents derived from this study are considered to be reference materials when evaluating the structural strength of similar aluminum equipment.

A Service Life Prediction for Unsound Concrete Under Carbonation Through Probability of Durable Failure (탄산화에 노출된 콘크리트 취약부의 확률론적 내구수명 평가)

  • Kwon, Seung Jun;Park, Sang Soon;Nam, Sang Hyeok;Lho, Byeong Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.49-58
    • /
    • 2008
  • Generally, steel corrosion occurs in concrete structures due to carbonation in down-town area and underground site and it propagates to degradation of structural performance. In general diagnosis and inspection, only carbonation depth in sound concrete is evaluated but unsound concrete such as joint and cracked area may occur easily in a concrete member due to construction process. In this study, field survey of carbonation for RC columns in down-town area is performed and carbonation depth in joint and cracked concrete including sound area is measured. Probability of durable failure with time is calculated through probability variables such as concrete cover depth and carbonation depth which are obtained from field survey. In addition, service life of the structures is predicted based on the intended probability of durable failure in domestic concrete specification. It is evaluated that in a RC column, various service life is predicted due to local condition and it is rapidly decreased with insufficient cover depth and growth of crack width. It is also evaluated that obtaining cover depth and quality of concrete is very important because the probability of durable failure is closely related with C.O.V. of cover depth.

Application of Amplitude Demodulation to Acquire High-sampling Data of Total Flux Leakage for Tendon Nondestructive Estimation (덴던 비파괴평가를 위한 Total Flux Leakage에서 높은 측정빈도의 데이터를 획득하기 위한 진폭복조의 응용)

  • Joo-Hyung Lee;Imjong Kwahk;Changbin Joh;Ji-Young Choi;Kwang-Yeun Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.17-24
    • /
    • 2023
  • A post-processing technique for the measurement signal of a solenoid-type sensor is introduced. The solenoid-type sensor nondestructively evaluates an external tendon of prestressed concrete using the total flux leakage (TFL) method. The TFL solenoid sensor consists of primary and secondary coils. AC electricity, with the shape of a sinusoidal function, is input in the primary coil. The signal proportional to the differential of the input is induced in the secondary coil. Because the amplitude of the induced signal is proportional to the cross-sectional area of the tendon, sectional loss of the tendon caused by ruptures or corrosion can be identified by the induced signal. Therefore, it is important to extract amplitude information from the measurement signal of the TFL sensor. Previously, the amplitude was extracted using local maxima, which is the simplest way to obtain amplitude information. However, because the sampling rate is dramatically decreased by amplitude extraction using the local maxima, the previous method places many restrictions on the direction of TFL sensor development, such as applying additional signal processing and/or artificial intelligence. Meanwhile, the proposed method uses amplitude demodulation to obtain the signal amplitude from the TFL sensor, and the sampling rate of the amplitude information is same to the raw TFL sensor data. The proposed method using amplitude demodulation provides ample freedom for development by eliminating restrictions on the first coil input frequency of the TFL sensor and the speed of applying the sensor to external tension. It also maintains a high measurement sampling rate, providing advantages for utilizing additional signal processing or artificial intelligence. The proposed method was validated through experiments, and the advantages were verified through comparison with the previous method. For example, in this study the amplitudes extracted by amplitude demodulation provided a sampling rate 100 times greater than those of the previous method. There may be differences depending on the given situation and specific equipment settings; however, in most cases, extracting amplitude information using amplitude demodulation yields more satisfactory results than previous methods.