• Title/Summary/Keyword: Local corrosion

Search Result 239, Processing Time 0.027 seconds

Characterization of Acoustic Emission Signal for Welding Flaw and Stress Corrosion of SPPH Steels (SPPH강의 용접결함과 응력부식에 따른 음향 방출 신호의 특성)

  • Kim, Sung-Dai;Jung, Woo-Gwang;Lee, Jong-O;Jung, Yu-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.97-104
    • /
    • 2007
  • An investigation has been made on the relationship between characteristics of Acoustic Emission (AE) signal in welding flaw and the stress corrosion defect in-service for the high pressure pipe steel. In order to tackle the problem of welding flaw in high pressure pipe, specimens were made by the aid of the application of both corrosion liquid usage and a quenching method after local heating. The amplitude of signal was $60{\sim}75\;dB$ in the territory which is suspected for defect, and the specimens which only have welding flaw showed gradients of 0.034, 0.034, 0.035. Moreover, there is a certain increase in gradient even though the differences are very slight. That is, corrosion specimens showed new gradients of 0.040, 0.039, 0.041 which put welding flaw and corrosion mechanism together. After pressurizing 3 minutes, AE signal has been detected from welding flaw easily in each part of the section. It is possible to predict the occurrence and also prevent the damage of stress corrosion crack which has characteristics of cleavage fracture.

Evaluation of Compressive Strengths of Tubular Steel Members According to Corrosion Damage and Shape (원형 강관의 국부 부식손상 수준 및 손상형태에 따른 압축강도 성능평가)

  • Ahn, Jin Hee;Nam, Dong Kyun;Lee, Won Hong;Huh, Jungwon;Kim, In Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.213-222
    • /
    • 2016
  • For a steel structure with long service period, structural performance can be changed or decreased by corrosion damage occurred under severe corrosion environment condition. In this study, to examine compressive strength and behavior of circular steel member depending on corrosion damage, compressive loading tests were conducted using circular steel member with artificial corrosion damage which was applied by mechanical process and hand drill. From test results, local corrosion area and pattern is related to their structural performance. Their lcoal bucklings were occurred near artificially sectional damaged part. Reduction in compressive strength of circular steel member was also suggested according to their corroded part and damage.

Investigation and Assessment of the Deterioration on Aging Large Water Mains (대형 상수관로 노후상태 조사 및 평가에 관한 연구)

  • Kim, Ju-Hwan;Bae, Chul-Ho;Kim, Jung-Hyun;Hong, Sung-Ho;Lee, Kyung-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.545-558
    • /
    • 2006
  • The current conditions of large water mains are evaluated by deteriorations and the causes of deterioration are investigated through visual assessments in the field, mechanical tests and analysis of chemical compositions in laboratory for each pipe material, unlined cast iron pipes (CIPs), ductile iron pipes (DCIPs) and steel pipes (SPs) Tubercles and scales from internal and external corrosion of unlined cast iron pipes were identified as the causes of functional performance limitations in large water mains. It is investigated that main causes of internal and external corrosion of water pipes are from lots of depositions of organic and inorganic substances on pipe surface, concentrated pitting, and uniform corrosion by local or global exfoliation or detachment of lining and coatings of DCIPs and SPs. Internal and external corrosion depths of CIPs were higher than those of DCIPs and SPs. Consequently, total corrosion rate summed internal and external corrosion rates of CIPs also were shown to be higher than those of DCIPs and SPs. The failure time from hole generation of CIPs by total corrosion rate was predicted to be taken sixteen years, and DCIPs and SPs were twenty-six years and one hundred and fifty three years. And longitudinal deflection of investigated water mains were not happened and mechanical strengths such as tensile strength, elongation, and hardness also were mostly suited to Korea Standards. It was thought that the weakness of tensile strength of one sample(S-11) was, however, due to higher carbon contents(%) in CIPs. Pipe deterioration score of S-46 was 55.2 and was preferentially assessed to be rehabilitated.

Electrochemical Corrosion and Hydrogen Diffusion Behaviors of Zn and Al Coated Hot-Press Forming Steel Sheets in Chloride Containing Environments (아연 및 알루미늄이 도금된 Hot-Press Forming 강의 염화물 환경 내 전기화학적 부식 및 수소확산거동)

  • Park, Jin-seong;Lee, Ho Jong;Kim, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.5
    • /
    • pp.286-294
    • /
    • 2018
  • Hot-press forming(HPF) steel can be applied successfully to auto parts because of its superior mechanical properties. However, its resistances to aqueous corrosion and the subsequent hydrogen embrittlement(HE) decrease significantly when the steel is exposed to corrosive environments. Considering that the resistances are greatly dependent on the properties of coating materials formed on the steel surface, the characteristics of the corrosion and hydrogen diffusion behaviors regarding the types of coating material should be clearly understood. Electrochemical polarization and impedance measurements reveal a higher corrosion potential and polarization resistance and a lower corrosion current of the Al-coating compared with Zn-coating. Furthermore, it was expected that the diffusion kinetics of the hydrogen atoms would be much slower in the Al-coating, and this would be due mainly to the much lower diffusion coefficient of hydrogen in the Al-coating with a face-centered cubic structure. The superior surface inhibiting effect of the Al-coating, however, is degraded by the formation of local cracks in the coated layer under severe stress conditions, and therefore further study will be necessary to gain a clearer understanding of the effect of cracks formed on the coated layer on the subsequent corrosion and hydrogen diffusion behaviors.

The Specific Case Analysis of Biomineralization Induced by Sulfate Reducing Bacteria

  • Liu, Hongwei;Qin, Shuang;Fu, Chaoyang;Xiao, Fei;Wang, Deli;Han, Xia;Wang, Tianli;Liu, Hongfang
    • Corrosion Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.285-293
    • /
    • 2017
  • The effects of sulfate reducing bacteria (SRB) on the corrosion and scaling of the Q235 carbon steel has been investigated in the simulated sewage water and oil field gathering pipelines production water, using scanning electron microscopy (SEM), energy dispersive x-ray spectrometry (EDS), and three-dimensional stereoscopic microscope. Results indicated that the concentration of SRB reached the maximum value on the ninth day in simulated sewage water with a large amount of scaling on the surface of specimen. In oil field gathering pipelines, a large amount of scaling and mineralization of mineral salts and thick deposition of extracellular polymeric substance (EPS) layers were also observed on the surface of specimen. The thickness of biofilm was about $245{\mu}m$ within 30 days. After adding microbicides, the thickness of corrosion products film was only up to $48-106{\mu}m$ within 30 days, suggesting that SRB could induce biomineralization. Under-deposit corrosion morphology was uniform in the absence of microbicides while local corrosion was observed in the presence of microbicides.

Effects of Annealing and Post-weld Heat Treatments on Corrosion Behaviors of Super Austenitic Stainless Steel (소둔 및 용접후열처리가 슈퍼 오스테나이트계 스테인리스강의 부식거동에 미치는 영향)

  • Yun, Duck Bin;Park, Jin Sung;Cho, Dong Min;Hong, Seung Gab;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.426-434
    • /
    • 2021
  • The effect of two different annealing temperatures on the level of the second phase precipitated in the microstructure and the corrosion behaviors of super austenitic stainless steel were examined. The sample annealed at a higher temperature had a significantly lower fraction of the sigma phase enriched with Cr and Mo elements, showing more stable passivity behavior during the potentiodynamic polarization measurement. However, after the welding process with Inconel-type welding material, severe corrosion damage along the interface between the base metal and the weld metal was observed regardless of the annealing temperature. This was closely associated with the precipitation of the fine sigma phase with a high Mo concentration in the unmixed zone (UMZ) during the welding process, leading to the local depletion of Mo concentrations around the sigma phase. On the other hand, the fraction of the newly precipitated fine sigma phase in the UMZ was greatly reduced by post-weld heat treatment (PWHT), and the corrosion resistance was greatly improved. Based on the results, it is proposed that the alloy composition of welding materials and PWHT conditions should be further optimized to ensure the superior corrosion resistance of welded super austenitic stainless steel.

A Study on the Corrosion and Degradation of Boiler Tubes Steel in Fossil Power Plant

  • Baik, Young Min;Jeong, Hee Don;Kweon, Young Gak
    • Corrosion Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.123-128
    • /
    • 2006
  • It was analyzed the causes of boiler tube rupture due to a degradation and corrosion on the boiler tubes in fossil power plant. The experiments were carried out among samples taken from the operating facilities. The result were analyzed based on experimental results from mechanical strength, microstructure observation, and hardness measurement in order to determine the cause of local rupture on boiler tubes. In general, 2.25Cr-1Mo steel generates carbides, it is coarsened, its ductility and strength abruptly decreased as degradation is in progress, In order to confirm this phenomenon, we observed changes of the mount of Cr and Mo of carbide by carrying out EDX chemical composition analysis. The amount of Cr and Mo in the degraded material or service exposed material gradually increased the amount of Mo but initially they were almost maintained at the same amount. Furthermore, we observed that the carbide become coarsened both in the grain and at the grain boundary. Tensile test was carried out to measure a material hardness and to recognize a drop-off of hardness. Overall result for tensile strength and hardness turned out to be lower than new material and mechanical strength and hardness was degraded as the material degradation was in progress.

Failure Mode and Fracture Behavior Evaluation of Pipes with Local Wall Thinning Subjected to Bending Load (감육배관의 굽힘하중에 의한 손상모드와 파괴거동 평가)

  • Ahn, Seok-Hwan;Nam, Ki-Woo;Kim, Seon-Jin;Kim, Jin-Hwan;Kim, Hyun-Soo;Do, Jae-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.8-17
    • /
    • 2003
  • Fracture behaviors of pipes with local wall thinning are very important for the integrity of nuclear Power Plant. In Pipes of energy Plants, sometimes, the local wall thinning may result from severe erosion-corrosion (E/C) damage. However, the effects of local wall thinning on strength and fracture behaviors of piping system were not well studied. In this paper, the monotonic bending tests were performed of full-scale carbon steel pipes with local wall thinning. A monotonic bending load was applied to straight pipe specimens by four-point loading at ambient temperature without internal pressure. From the tests, fracture behaviors and fracture strength of locally thinned pipe were manifested systematically. The observed failure modes were divided into four types; ovalization. crack initiation/growth after ovalization, local buckling and crack initiation/growth after local buckling. Also, the strength and the allowable limit of piping system with local wall thinning were evaluated.

Evaluation of Corrosion and Cavitation Erosion Resistance of Sealed Aluminum Alloy after Anodizing Treatment in Seawater (양극산화 후 실링처리된 알루미늄 합금의 해수 내 내식성과 캐비테이션 침식 저항성 평가)

  • Park, Il-Cho;Lee, Jung-Hyung;Han, Min-Su;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.2
    • /
    • pp.87-94
    • /
    • 2018
  • Various sealing techniques were applied to the anodized 5083 aluminum alloy for marine environment to reduce corrosion and cavitation erosion damage. Electrochemical experiments and cavitation erosion tests were conducted to evaluate the corrosion resistance and cavitation resistance of the anodic oxide film treated with sealing in natural seawater solution. Then, damaged surface morphology was analyzed by scanning electron microscope(SEM) and 3D microscope. As the results of the electrochemical experiments, it was observed that the surface damage of all the experimental conditions in the anodic polarization experiment was locally grown by the combination of crack and corrosion damage. In the Tafel analysis, the corrosion resistance of all sealing treatment conditions was improved compared to the anodizing. On the other hand, cavitation erosion tests showed that the anodizing and all the sealing treatment conditions generated local pit damage by cavitation erosion attack and grew to crater damage in the observation of damaged surface by SEM. Also, the weight loss and the surface damage depth measured with the experiment time presented that most of the sealing treatment conditions showed better cavitation erosion resistance than the anodizing, and they had an incubation period at the beginning of the experiment.

Evaluation of Load-Carrying Capacity Loss due to Corrosion in Thin-Walled Section Steel Members (판폭두께비가 큰 휨부재의 부식발생에 따른 구조성능평가에 관한 연구)

  • Chung, Kyung Soo;Park, Man Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.619-626
    • /
    • 2009
  • The use of thin-walled flexural members has proven to be a practical way to achieve the lowest cost in the construction of prefabricated long-span, low-rise building frames in steel. On the other hand, most of these structures are subjected to corrosion due to environmental exposure, which can reduce their carrying capacity. Corrosion damage is a serious problem for these structures as it causes thickness loss. That is, the class of a section (plastic, compact, non-compact, or slender) may change from one to another due to the loss of thickness of the compression flange and web due to corrosion. In this study, the effects of corrosion on thin-walled members in long-span steel frames were evaluated with regard to the moment-rotation curve, initial stiffness, maximum load capacity, stiffness in the post-maximum capacity, and energy absorption.