• 제목/요약/키워드: Local cooling

검색결과 345건 처리시간 0.028초

냉각유로방식 변화에 따른 슬롯 막냉각에서의 유동 및 열전달 특성 (Flow and Heat Transfer Characteristics in a Slot Film Cooling with Various Flow Inlet Conditions)

  • 함진기;조형희
    • 대한기계학회논문집B
    • /
    • 제24권6호
    • /
    • pp.870-879
    • /
    • 2000
  • An experimental investigation is conducted to improve a slot film cooling system which can be used for the cooling of gas turbine combustor liner. The tangential slots are constructed of discrete holes with different injection types which are the parallel, vertical, and combined to the slot lip. The investigation is focused on the coolant supply systems of normal-, parallel-, and counter-flow paths to the mainstream direction. A naphthalene sublimation technique has been employed to measure the local heat/mass transfer coefficients in a slot with various injection types and coolant feeding directions. The velocity distributions at the exit of slot lip for the parallel and vertical injection types are fairly uniform with mild periodical patterns with respect to the hole positions. However, the combined injection type increases the nonuniformity of flow distribution with the period equaling twice that of hole-to-hole pitch due to splitting and merging of the ejected flows. The secondary flow at the lip exit has uniform velocity distributions for the parallel and vertical injection types, which are similar to the results of a two-dimensional slot injection. In the results of local heat/mass transfer coefficient, the best cooling performance inside the slot is obtained with the vertical injection type among the three different injection types due to the effect of jet impingement. The lateral distributions of Sh with the parallel- and counter-flow paths are more uniform than the normal flow path. The averaged Sh with the injection holes are $2{\sim}5$ times higher than that of a smooth two-dimensional slot path.

공랭형 수직평판 흡수기 액막에서의 열 및 물질전달에 관한 수치적 연구 (A Numerical Study on Heat and Mass Transfer in a Falling Film of Vertical Plate Absorber Cooled by Air)

  • 김선창;오명도;이재헌
    • 대한기계학회논문집
    • /
    • 제19권4호
    • /
    • pp.1071-1082
    • /
    • 1995
  • Numerical analyses have been performed to obtain the absorption heat and mass transfer coefficients and the absorption mass flux from a falling film of the LiBr aqueous solution which is cooled by cooling air. Heat flux at the wall is specified in terms of the heat transfer coefficient of cooling air and the cooling air temperature. Effects of operating conditions, such as the heat transfer coefficient, the cooling air temperature, the system pressure and the solution inlet concentration have been investigated in view of the local absorption mass flux and the total mass transfer rate. Effects of film thickness and film Reynolds number on the heat and mass transfer coefficients have been also estimated. Analyses for the constant wall temperature condition have been also carried out to examine the reliability of present numerical method by comparing with previous investigations.

A Study of the Evaporation Heat Transfer in Advanced Reactor Containment

  • Y. M. Kang;Park, G. C.
    • Nuclear Engineering and Technology
    • /
    • 제29권4호
    • /
    • pp.291-298
    • /
    • 1997
  • In advanced nuclear reactors, the passive containment cooling has been suggested to enhance the safety. The passive cooling has two mechanisms, air natural convection and oater cooling with evaporation. To confirm the coolability of PCCS, many works have been performed experimentally and numerically. In this study, the water cooling test was performed to obtain the evaporative heat transfer coefficients in a scaled don segment type PCCS facility which have same configuration with AP600 prototype containment. Air-steam mixture temperature and velocity, relative humidity and well heat flux are measured. The local steam mass flow rates through the vertical plate part of the facility are calculated from the measured data to obtain evaporative heat transfer coefficients. The measured evaporative heat transfer coefficients are compared with an analytical model which use a mass transfer coefficients. From the comparison, the predicted coefficients show good agreement with experimental data however, some discrepancies exist when the effect of wave motion is not considered. Finally, a new correlation on evaporative heat transfer coefficients are developed using the experimental values.

  • PDF

강재 급속냉각용 고온 열유속게이지 개발 (Development of High-Temperature Heat Flux Gauge for Steel Quenching)

  • 이정호
    • 열처리공학회지
    • /
    • 제23권6호
    • /
    • pp.323-330
    • /
    • 2010
  • The present study was motivated by increasing demands on quantitative measurements of the heat flux through the water cooling and quenching process of hot steel. The local heat flux measurements are employed by a novel experimental technique that has a function of high-temperature heat flux gauge in which test block assemblies are directly used to measure the heat flux variation during water cooling and quenching of hot steel. The heat flux can be directly achieved by Fourier's law and is also compared with numerical estimation which is solved by inverse heat conduction problem (IHCP). The high-temperature heat flux gauge developed in this study can be applicable to measure cooling rate and history during the actual cooling applications of steelmaking process. In addition, the measurement uncertainty of heat flux is calculated by a quantitative uncertainty analysis which is based on the ANSI/ASME PTC 19.1-2005 standard.

전력구 내부온도 예측 및 최적냉각설계에 관한 연구 (Study on The Underground tunnel Cooling System)

  • 김민주;강연욱;장태인;강지원;김두진;윤종건;김재승
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.424-425
    • /
    • 2015
  • In the underground cable tunnel, The transmission efficient is lowered due to the local heating region. In this reason, the cooling system is needed. For adapting the cooling system, Preceding study on the factor of increasing temperature in the underground tunnel is essential. In this paper optimal cooling system suggest.

  • PDF

고밀도 관측자료를 이용한 야간 지면냉각과 찬공기 이동 분석 - 서울 은평구 뉴타운 사례 (Nocturnal Surface Cooling and Cold Air Transport Analysis Based on High Density Observation - A Case Study of Eunpyeong New Town in Seoul)

  • 이채연;김규랑;최영진;원혜영
    • 한국지리정보학회지
    • /
    • 제15권4호
    • /
    • pp.124-137
    • /
    • 2012
  • 기후분석은 도시 쾌적도를 고려하는 도시계획에 있어 중요한 요소 중 하나이다. 도시지역의 기후는 종관규모보다 작은 국지규모의 기후 영향을 받는데, 본 연구에서는 도시 안에서의 야간 지면냉각과 찬공기 생성 및 유입의 효과를 분석함으로써 도시지역의 국지기후에 대한 영향을 정량화 하고자 하였다. 서울관측소 풍속에 미치는 종관 기상의 영향은 30%정도인 반면, 관측소 주변의 지형 건물 열적 현상의 영향은 70%정도인 것으로 나타났다. 또한 서울 은평구 뉴타운의 연구지역에 대하여 서울기후분석(CAS, Climate Analysis Seoul) 모델로 분석한 결과, 국지영향 기온편차 분포에서 토지피복률에 따라 도시 및 도시외곽 지역의 기온 특성이 함께 존재하고 있음을 보여주었다. 또한 고밀도 관측 자료로부터 각 지점들의 시간대별 열적반응이 국지영향 기온편차 분포와 일치함을 알 수 있었다. 관측지점들 중 실개천을 따라 설치된 지점들의 일변동은 유사하게 나타났는데, 인근 산으로부터 경사면을 따라 유입된 찬공기의 생성, 이동, 정체는 관측된 수직기온경도를 이용하여 표현되었다. 실개천의 입구에서 관측된 수직기온경도는 지면 냉각에 의한 것과 외부로부터의 찬공기 유입이라는 두 가지로 설명될 수 있다. 지면냉각은 풍속과 관계없이 존재하지만, 찬공기 유입에 의한 냉각효과는 풍속이 낮을 때만 일어났다. 풍속의 강약에 따른 회귀분석식을 이용하여, 찬공기 유입 냉각효과는 국지적인 지면 냉각의 84%였다는 것을 밝혔다. 본 연구를 통해 지역특성이 국지기후에 미치는 영향의 크기를 기존의 정적인 기온영향 분석에서 동적인 찬공기 유입분석으로 확장하였다. 이 연구를 바탕으로 앞으로의 기후분석에서는 도시민의 쾌적도를 지원하기 위한 도시개발계획의 찬공기 특성 변화를 분석할 수 있게 될 것이다.

평판에 분사된 분무충돌제트의 냉각특성에 대한 실험적 연구 (An experimental study on cooling characteristics of mist impinging jet on a flat plate)

  • 전상욱;정원석;이준식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.528-533
    • /
    • 2001
  • An experimental study is carried out to investigate the effects of air and water mass flow rates on cooling characteristics of mist impinging jet on a flat plate. Experiments are conducted with air mass flow rates from 0.0 to 3.0 g/s, and water mass flow rates from 5.0 to 20.0 g/s. An air-atomizing nozzle is used for the purpose of controlling air and water mass flow rates. In this study, a new test section is designed to obtain local heat transfer coefficient distributions. Heat transfer characteristics of the mist impinging jet are explained with the aid of flow visualization. Surface temperature and heat transfer coefficient distributions become more uniform as air mass flow rate increases, and that the increases in water flow rate mainly enhance cooling performance. Air mass flow rate weakly influences averaged heat transfer coefficient when water mass flow rate is low, but averaged heat transfer coefficient increases remarkably as air mass flow rate in case of high water mass flow rate.

  • PDF

회전하는 충돌제트/유출냉각기법에서 분사홀 변화에 따른 열/물질전달 특성 (Heat/Mass Transfer Characteristics for Variation of Injection Hole in Rotating Impingement/Effusion Cooling System)

  • 홍성국;조형희
    • 한국유체기계학회 논문집
    • /
    • 제10권3호
    • /
    • pp.25-32
    • /
    • 2007
  • The present paper deals with the heat/mass transfer characteristics for the rotating impingement/effusion cooling system. By changing the size and number of injection hole, its effects on heat/mass transfer are investigated and three different injection hole cases are considered such as LH, DH and SH, respectively. Reynolds number based on the effusion hole diameter is fixed to 3,330 and two jet orientations are considered. A naphthalene sublimation method is used to obtain the heat/mass transfer coefficients on the effusion plate. The LH case shows that the local heat/mass transfer is significantly varied by the rotation. Moreover, the low and non-uniform Sh distributions occur because the impinging jet is deflected by Coriolis force. Meanwhile, for DH and SH cases, the local heat/mass transfer coefficients are enhanced significantly compared to LH case and the rotation effect decreases with increasing the jet velocity. The averaged Sh value of DH and SH case rises up to 45%, 85% than that of LH case. However, the uniformity of heat/mass transfer deteriorates due to the steep variation of heat/mass transfer.

평판에 분사된 분무충돌제트의 냉각특성에 대한 실험적 연구 (An Experimental Study on Cooling Characteristics of Mist Impinging Jet on a Flat Plate)

  • 전상욱;정원석;이준식
    • 대한기계학회논문집B
    • /
    • 제27권4호
    • /
    • pp.511-517
    • /
    • 2003
  • An experiment is conducted to investigate the effect of air and water mass flow rates on cooling characteristics of mist impinging jet on a flat plate. The air mass flow rate ranges from 0.0 to 3.0 g/s, and water mass flow rates from 5.0 to 20.0 g/s. An air-atomizing nozzle is used fur the purpose of controlling air and water mass flow rates. The test section is designed distinctively from previous works to obtain local heat transfer coefficient distributions. Heat transfer characteristics of the mist impinging jet are explained with the aid of flow visualization. Surface temperature and heat transfer coefficient distributions become more uniform as air mass flow rate increases. The water flow rate provides substantial contribution to enhancement of cooling performance. On the other hand, The air mass flow rate weakly influences the averaged heat transfer rate when the water mass flow rate is low, but the averaged heat transfer rate Increases remarkably with the air mass flow rate in case of the high water mass flow rate.

연소실 냉각을 위한 충돌제트/유출냉각기법에서 유출판에서의 열전달특성 (Heat Transfer Characteristics on Effusion Plate in Impingement/Effusion Cooling for Combustor)

  • 이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제24권3호
    • /
    • pp.435-442
    • /
    • 2000
  • The present study is conducted to investigate the local heat/mass transfer characteristics for flow through perforated plates. A naphthalene sublimation method is employed to determine the local heat/mass transfer coefficients on the effusion plate. Two parallel perforated plates are arranged for the two different ways: staggered and shifted in one direction. The experiments are conducted for hole pitch-to-diameter ratios of 6.0, for gap distance between the perforated plates of 0.33 to 10 hole diameters, and for Reynolds numbers of 5,000 to 12,000. The result shows that the high transfer region is formed at stagnation region and at the mid-line of the adjacent impinging jets due to secondary vortices and flow acceleration to the effusion hole. For flows through the perforated plates, the mass transfer rates on the surface of the effusion plate are about six to ten times higher than for effusion cooling alone (single perforated plate). More uniform and higher heat/mass transfer characteristic is obtained in overall region with small gap between two perforated plates.