• Title/Summary/Keyword: Local Softening

Search Result 46, Processing Time 0.025 seconds

Effect of Local Softening for Spring-back Reduction of Ultra High Strength Steel on Microstructure and Mechanical Properties (스프링백 저감을 위한 초고강도강의 국부적 연화 열처리에 따른 미세조직과 기계적 특성 변화에 관한 연구)

  • Park, S.E.;Park, B.H.;Oh, M.H.;Kang, B.S.;Ku, T.W.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.134-141
    • /
    • 2021
  • In order to improve excessive spring-back behavior as a result of the roll forming process using ultra high strength steel (UHSS) sheet, local softening in region of a partial area expected to be deformed on an initial blank is considered in this study. With SPFC1470 UHSS sheet with initial blank thickness of 1.20mm, the local softening is performed with the following conditions: temperatures of 500℃, 550℃, 600℃ and 650℃, and holding time of 20s, 40s, 80s and 160s. Mechanical properties, such as yield stress and tensile strength, as well as elongation, are evaluated through uniaxial tensile tests, while the microstructural characteristics as a result of local softening are also investigated using the heat-treated specimens. As a result, it is shown that the spring-back behavior of the roll-formed prototype was reduced about by 78.9%, when the local softening at about 500℃ was performed for 160s considering the practical manufacturing condition.

The role of softening in the numerical analysis of R.C. framed structures

  • Bontempi, Franco;Malerba, Pier Giorgio
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.785-801
    • /
    • 1997
  • Reinforced Concrete beams with tension and compression softening material constitutive laws are studied. Energy-based and non-local regularisation techniques are presented and applied to a R.C. element. The element characteristics (sectional tangent stiffness matrix, element tangent stiffness matrix restoring forces) are directly derived from their symbolic expressions through numerical integration. In this way the same spatial grid allows us to obtain a non-local strain estimate and also to sample the contributions to the element stiffness matrix. Three examples show the spurious behaviors due to the strain localization and the stabilization effects given by the regularisation techniques, both in the case of tension and compression softening. The possibility to overestimate the ultimate load level when the non-local strain measure is applied to a non softening material is shown.

Numerical simulations of localization of deformation in quasi-brittle materials within non-local softening plasticity

  • Bobinski, J.;Tejchman, J.
    • Computers and Concrete
    • /
    • v.1 no.4
    • /
    • pp.433-455
    • /
    • 2004
  • The paper presents results of FE-calculations on shear localizations in quasi-brittle materials during both an uniaxial plane strain compression and uniaxial plane strain extension. An elasto-plastic model with a linear Drucker-Prager type criterion using isotropic hardening and softening and non-associated flow rule was used. A non-local extension was applied in a softening regime to capture realistically shear localization and to obtain a well-posed boundary value problem. A characteristic length was incorporated via a weighting function. Attention was focused on the effect of mesh size, mesh alignment, non-local parameter and imperfections on the thickness and inclination of shear localization. Different methods to calculate plastic strain rates were carefully discussed.

Local Softening of Hot-stamped Parts using a Laser Heat Treatment (레이저 열처리를 이용한 핫스탬핑 부품의 국부 연화 기술 연구)

  • Kim, K.B.;Jung, Y.I.;Kim, T.J.
    • Transactions of Materials Processing
    • /
    • v.24 no.5
    • /
    • pp.354-360
    • /
    • 2015
  • AHSS (Advanced High Strength Steels) has been increasingly employed by global automotive OEMs in order to satisfy strengthened regulations and reduce weight for fuel efficiency. Hot stamping using boron steels in AHSS increases not only formability but also strength. The typical hot-stamped automotive part is the center pillar that is critical for vehicle side impact. However, the hot-stamped part can be risky for the passenger safety caused by brittle fracture under a vehicle collision. The high power diode laser is suitable for the heat treatment giving AHSS increased elongation that prevents brittle fracture in car crash. Therefore, local softening by laser heat treatment for energy absorption area on the hot-stamped part improves crash-worthiness.

Determination of representative volume element in concrete under tensile deformation

  • Skarzyski, L.;Tejchman, J.
    • Computers and Concrete
    • /
    • v.9 no.1
    • /
    • pp.35-50
    • /
    • 2012
  • The 2D representative volume element (RVE) for softening quasi-brittle materials like concrete is determined. Two alternative methods are presented to determine a size of RVE in concrete subjected to uniaxial tension by taking into account strain localization. Concrete is described as a heterogeneous three-phase material composed of aggregate, cement matrix and bond. The plane strain FE calculations of strain localization at meso-scale are carried out with an isotropic damage model with non-local softening.

Saw-tooth softening/stiffening - a stable computational procedure for RC structures

  • Rots, Jan G.;Invernizzi, Stefano;Belletti, Beatrice
    • Computers and Concrete
    • /
    • v.3 no.4
    • /
    • pp.213-233
    • /
    • 2006
  • Over the past years techniques for non-linear analysis have been enhanced significantly via improved solution procedures, extended finite element techniques and increased robustness of constitutive models. Nevertheless, problems remain, especially for real world structures of softening materials like concrete. The softening gives negative stiffness and risk of bifurcations due to multiple cracks that compete to survive. Incremental-iterative techniques have difficulties in selecting and handling the local peaks and snap-backs. In this contribution, an alternative method is proposed. The softening diagram of negative slope is replaced by a saw-tooth diagram of positive slopes. The incremental-iterative Newton method is replaced by a series of linear analyses using a special scaling technique with subsequent stiffness/strength reduction per critical element. It is shown that this event-by-event strategy is robust and reliable. First, the model is shown to be objective with respect to mesh refinement. Next, the example of a large-scale dog-bone specimen in direct tension is analyzed using an isotropic version of the saw-tooth model. The model is capable of automatically providing the snap-back response. Subsequently, the saw-tooth model is extended to include anisotropy for fixed crack directions to accommodate both tensile cracking and compression strut action for reinforced concrete. Three different reinforced concrete structures are analyzed, a tension-pull specimen, a slender beam and a slab. In all cases, the model naturally provides the local peaks and snap-backs associated with the subsequent development of primary cracks starting from the rebar. The secant saw-tooth stiffness is always positive and the analysis always 'converges'. Bifurcations are prevented due to the scaling technique.

A Local Softening Method for Reducing Die Load and Increasing Service Life in Trimming of Hot Stamped Part (핫스템핑 부품의 전단가공에서 전단 하중의 감소 및 트리밍 금형 수명 향상을 위한 국부 연화 방법)

  • Choi, H.S.;Lim, W.S.;Kang, C.G.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.20 no.6
    • /
    • pp.427-431
    • /
    • 2011
  • In general, hot stamped component is trimmed by costly and time consuming laser cutting when the material strength is over 1,500MPa. The aim of this work was to demonstrate that the trimming die life is improved and the trimming load is decreased by lowering the strength of the region to be trimmed. The model employed in this study was a hat shape, similar to the cross section of many hot stamped products. FE-analysis of hot stamping process was performed to evaluate the effect of tool shape on cooling rate at the area to be trimmed. The best tool shape was thus identified, which created slower cooling and lower hardness at the region to be trimmed. The wear at the cutting tool edge was also reduced.

Characteristics of solutions in softening plasticity and path criterion

  • Chen, G.;Baker, G.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.2
    • /
    • pp.141-152
    • /
    • 2003
  • Characteristics of solutions of softening plasticity are discussed in this article. The localized and non-localized solutions are obtained for a three-bar truss and their stability is evaluated with the aid of the second-order work. Beyond the bifurcation point, the single stable loading path splits into several post-bifurcation paths and the second-order work exhibits several competing minima. Among the multiple post-bifurcation equilibrium states, the localized solutions correspond to the minimum points of the second-order work, while the non-localized solutions correspond to the saddles and local maximum points. To determine the real post-bifurcation path, it is proposed that the structure should follow the path corresponding to the absolute minimum point of the second-order work. The proposal is further proved equivalent to Bazant's path criterion derived on a thermodynamics basis.

On the large plastic deformation of tubular beams under impact loading

  • Wang, B.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.5
    • /
    • pp.463-474
    • /
    • 1995
  • When a tubular cantilever beam is loaded by a dynamic force applied transversely at its tip, the strain hardening of the material tends to increase the load carrying capacity and local buckling and cross-sectional overlization occurring in the tube section tends to reduce the moment carrying capacity and results in structural softening. A theoretical model is presented in this paper to analyze the deformation of a tubular beam in a dynamic response mode. Based on a large deflection analysis, the hardening/softening M-${\kappa}$ relationship is introduced. The main interest is on the curvature development history and the deformed configuration of the beam.