• Title/Summary/Keyword: Local Slope

Search Result 356, Processing Time 0.028 seconds

Prediction of Rainfall-Induced Slope Failure Using Hotelling's T-Square Statistic (Hotelling의 T-square 통계량을 이용한 강우유발 사면붕괴 예측)

  • Kim, Seul-Bi;Na, Jong-Hwa;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.331-337
    • /
    • 2015
  • A new technique is presented to detect unstable slope behavior, based on Hotelling's T2 analysis of pore pressure and water content obtained during flume tests using granitic and gneissic weathered soils. Three sets of pore pressure-water content values were simultaneously obtained during each test, and T2 statistics at the 90.0% and 95.0% confidence levels were calculated based on the correlations between values. The results show that unsuccessful detection of some local failures of the flume slope depended on the sensor position. In the case of global slope failures, anomalous behavior was detected between several hundred and several thousand seconds before the event as T2 statistics exceeded the confidence interval 90%. Hotelling's T2 analysis provides a single control criterion because it enables correlations between diverse measured values within the same slope; the criterion also includes stepwise criteria for a forecasting and warning system based on confidence levels.

Excessive soil water stress responses of sesame (Sesamum indicum L.) and perilla (Perilla frutescens L.) cultivated from paddy fields with different topographic features

  • Ryu, Jongsoo;Baek, Inyeoul;Kwak, Kangsu;Han, Wonyoung;Bae, Jinwoo;Park, Jinki;Chun, Hyen Chung
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.749-760
    • /
    • 2018
  • In Korea, the largest agricultural lands are paddy fields which have poor infiltration and drainage properties. Recently, the Korean government has pursued cultivating upland crops in paddy fields to reduce overproduced rice in Korea. For this policy to succeed, it is critical to understand the topographic information of paddy fields and its effects on upland crops cultivated in the soils of paddy fields. The objective of this study was to characterize the growth properties of sesame and perilla from paddy fields with three soil topographic features and soil water effects which were induced by the topographic features of the sesame and perilla. The crops were planted in paddy fields located in Miryang, Gyeongnam with different topographies: mountain foot slope, local valley and alluvial plain. Soil water contents and groundwater levels were measured every hour during the growing season. The paddy field of the mountain foot slope was significantly effective in alleviating wet injury for the sesame and perilla in the paddy fields. The paddy field of the mountain foot slope had a decreased average soil water content and groundwater level during cultivation. Stress day index (SDI) from the alluvial plain paddy field had the greatest values from both crops and the smallest from the ones from the paddy field of the mountain foot slope. This result means that sesame and perilla had the smallest stress from the soil water content of the paddy field on the mountain foot slope and the greatest stress from the soil water content of the alluvial plain. It is important to consider the topography of paddy fields to reduce wet injury and to increase crop yields.

Study of Structurally Controlled Slope Instability: Pibanryeong, Chungbuk, S. Korea (지질 구조에 의한 사면의 불안정성에 관한 연구: 충북 피반령 부근)

  • Cheong, Sang-Won;Choi, Byoung-Ryol
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.459-470
    • /
    • 2008
  • Types of slope failure related to cut slope stability are interpreted through case analyses, and also factors affecting structurally controlled instability investigated, which are developed by geologic structures along a national road No. 25 across the Cheongwon and Boeun-Guns, Chungbuk. Engineering properties such as orientation, persistence, roughness and uniaxial compressive strength of joints are analyzed by square-inventory method in three areas with well-preserved outcrops. The study area is located in Ogcheon folded bet, and are composed of quartz-schist and quartzite in the Midongsan Formation and phyllite in the Ungyori Formation. Flexural beds by folding, schistosity and cleavage besides joints are developed due to slight metamorphism. Various types of joints developed by folding are formed such as strike-parallel, strike-perpendicular, wedge and wrench joint sets by both initially regional and later superposed folding. Factors of slope instability are created by crossing the orientations of joint, cleavage, bedding and slope one another. In the case that the orientation of a slope is coincident with one of beds, factors causing large-scale failure including plane failure are increased greatly. Also in the region that orientations of the slope and bed are crossed each other at high angle, only local and minor failures are shown in the slope.

The Design Method of Transverse Grate Inlets on Steep Local Road (급경사 국지도로에서의 횡유입부 설계 방법)

  • Kim, Jea-Kwon;Kim, Jung-Soo;Lee, Joon-Ho;Yoon, Sei-Eui
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.195-198
    • /
    • 2007
  • The type, the length, and the install space of the grate inlets in main street were designed with the consideration of discharge calculated with street surface rainfall. However, the discharge that was not intercepted at transverse grate inlets in steep local roads increases inundation areas around main street Therefore, it is necessary to analyze the flow characteristics and interception capacity at transverse grate inlets in steep local roads. Hydraulic experimental apparatus which can be changed the longitudinal slopes($2{\sim}10%$) of street, the size ($20{\sim}50cm$) and the types(TYPE I, II) of grate inlet was installed for this study. The range of the experimental discharges were from $2{\ell}/sec$ to $24{\ell}/sec$. The interception discharges of transverse grate inlets per unit width changing the longitudinal slope of steep local road were calculated by the hydraulic experimental results. The design method of transverse grate inlets was developed by the interception discharges per unit width. This design method was applied to decide the space and size of transverse grate inlets.

  • PDF

Topographic Normalization of Satellite Synthetic Aperture Radar(SAR) Imagery (인공위성 레이더(SAR) 영상자료에 있어서 지형효과 저감을 위한 방사보정)

  • 이규성
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.1
    • /
    • pp.57-73
    • /
    • 1997
  • This paper is related to the correction of radiometric distortions induced by topographic relief. RADARSAT SAR image data were obtained over the mountainous area near southern part of Seoul. Initially, the SAR data was geometrically corrected and registered to plane rectangular coordinates so that each pixel of the SAR image has known topographic parameters. The topographic parameters (slope and aspect) at each pixel position were calculated from the digital elevation model (DEM) data having a comparable spatial resolution with the SAR data. Local incidence angle between the incoming microwave and the surface normal to terrain slope was selected as a primary geometric factor to analyze and to correct the radiometric distortions. Using digital maps of forest stands, several fields of rather homogeneous forest stands were delineated over the SAR image. Once the effects of local incidence angle on the radar backscatter were defined, the radiometric correction was performed by an empirical fuction that was derived from the relationship between the geometric parameters and mean radar backscatter. The correction effects were examined by ground truth data.

Simple Bond Stress and Slip Relationship between CFRP Plank and Cast-in-Place DFRCC (탄소섬유 FRP판과 현장타설 고인성섬유보강콘크리트 사이의 단순 부착슬립 관계)

  • Yoo, Jun-Sang;Yoo, Seung-Woon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.25-31
    • /
    • 2016
  • Bond stress between cast-in-place ductile fiber reinforced cementitious composites and CFRP plank were experimentally analyzed. As failure shape, the mixture of failure between CFRP plank and epoxy, and failure between concrete and epoxy was shown. In case of RFCON from the suggested simple bond slip relationship, the maximum average bond stress was 5.39MPa, the initial slope was 104.09MPa/mm, and the total slip length was 0.19mm. PPCON showed the maximum average bond stress of 4.31MPa, the initial slope of 126.67MPa/mm, and the total slip length of 0.26mm, while RFCON+ appeared to have 8.71MPa, 137.69MPa/mm, 0.16mm. PPCON+ had 6.19MPa maximum average bond stress, 121.56MPa/mm initial slope, and 0.34mm total slip length. To comprehend the behavior of composite structure of FRP and concrete, local bond slip relation is necessary, and thus a simple relation is suggested to be easily applied on hybrid composite system.

Effects of inflow turbulence and slope on turbulent boundary layer over two-dimensional hills

  • Wang, Tong;Cao, Shuyang;Ge, Yaojun
    • Wind and Structures
    • /
    • v.19 no.2
    • /
    • pp.219-232
    • /
    • 2014
  • The characteristics of turbulent boundary layers over hilly terrain depend strongly on the hill slope and upstream condition, especially inflow turbulence. Numerical simulations are carried out to investigate the neutrally stratified turbulent boundary layer over two-dimensional hills. Two kinds of hill shape, a steep one with stable separation and a low one without stable separation, two kinds of inflow condition, laminar turbulent, are considered. An auxiliary simulation, based on the local differential quadrature method and recycling technique, is performed to simulate the inflow turbulence be imposed at inlet boundary of the turbulent inflow, which preserves very well in the computational domain. A large separation bubble is established on the leeside of the steep hill with laminar inflow, while reattachment point moves upstream under turbulent inflow condition. There is stable separation on the side of low hill with laminar inflow, whilw not turbulent inflow. Besides increase of turbulence intensity, inflow can efficiently enhance the speedup around hills. So in practice, it is unreasonable to study wind flow over hilly terrain without considering inflow turbulence.

Probabilistic Analyrgis of Slope Stactility for Progressive Failure (진행성 파괴에 대한 사면안정의 확률론적 해석)

  • 김영수
    • Geotechnical Engineering
    • /
    • v.4 no.2
    • /
    • pp.5-14
    • /
    • 1988
  • A probabilistic model for the progressive failure in a homogeneous soil slope consisting of strain-softening material is presented. The local safety margin of any slice above failure surface is assumed to follow a normal distribution. Uncertainties of the shear strength along potential failure surface are expressed by one-dimensional random field models. In this paper, only the case where failure initiates at toe and propagates up to the crest is considerd. The joint distribution of the safety margin of any two adjacent slices above the failure surface is assumed to be bivariate normal. The overall probability of the sliding failure is expressed as a product of probabilities of a series of conditional el.eats. Finally, the developed procedure has been applied in a case study to yield the reliability of a cut slope.

  • PDF

A new viewpoint on stability theorem for engineering structural and geotechnical parameter

  • Timothy Chen;Ruei-Yuan Wang;Yahui Meng;Z.Y. Chen
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.475-487
    • /
    • 2024
  • Many uncertainties affect the stability assessment of rock structures. Some of these factors significantly influence technology decisions. Some of these factors belong to the geological domain, and spatial uncertainty measurements are useful for structural stability analysis. This paper presents an integrated approach to study the stability of rock structures, including spatial factors. This study models two main components: discrete structures (fault zones) and well known geotechnical parameters (rock quality indicators). The geostatistical modeling criterion are used to quantify geographic uncertainty by producing simulated maps and RQD values for multiple equally likely error regions. Slope stability theorem would be demonstrated by modeling local failure zones and RQDs. The approach proided is validated and finally, the slope stability analysis method and fuzzy Laypunov criterion are applied to mining projects with limited measurement data. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage. Simulation results of linear and nonlinear structures show that the proposed method is able to identify structural parameters and their changes due to damage and unknown excitations. Therefore, the goal is believed to achieved in the near future by the ongoing development of AI and fuzzy theory.

Nonlinear dynamic behavior of Pamukcay Earthfill Dam

  • Terzi, Niyazi U.;Selcuk, Murat E.
    • Geomechanics and Engineering
    • /
    • v.9 no.1
    • /
    • pp.83-100
    • /
    • 2015
  • Water and energy supplies are the key factors affecting the economic development and environmental improvement of Turkey. Given their important role and the fact that a large part of Turkey is in seismically active zones dams should be accurately analyzed since failure could have a serious impact on the local population environment and on a wider level could affect the economy. In this paper, a procedure is proposed for the static, slope stability, seepage and dynamic analysis of an earth dam and the Pamukcay embankment dam. The acceleration time history and maximum horizontal peak ground accelerations of the $Bing\ddot{o}l$ (2003) earthquake data was used based on Maximum Design Earthquake (MDE) data. Numerical analysis showed that, the Pamukcay dam is likely to experience moderate deformations during the design earthquake but will remain stable after the earthquake is applied. The result also indicated that, non-linear analysis capable of capturing dominant non-linear mechanism can be used to assess the stability of embankment dams.