• 제목/요약/키워드: Local Search Technique

검색결과 113건 처리시간 0.021초

재난 구조용 다중 로봇을 위한 GNSS 음영지역에서의 TWR 기반 협업 측위 기술 (TWR based Cooperative Localization of Multiple Mobile Robots for Search and Rescue Application)

  • 이창은;성태경
    • 로봇학회논문지
    • /
    • 제11권3호
    • /
    • pp.127-132
    • /
    • 2016
  • For a practical mobile robot team such as carrying out a search and rescue mission in a disaster area, the localization have to be guaranteed even in an environment where the network infrastructure is destroyed or a global positioning system (GPS) is unavailable. The proposed architecture supports localizing robots seamlessly by finding their relative locations while moving from a global outdoor environment to a local indoor position. The proposed schemes use a cooperative positioning system (CPS) based on the two-way ranging (TWR) technique. In the proposed TWR-based CPS, each non-localized mobile robot act as tag, and finds its position using bilateral range measurements of all localized mobile robots. The localized mobile robots act as anchors, and support the localization of mobile robots in the GPS-shadow region such as an indoor environment. As a tag localizes its position with anchors, the position error of the anchor propagates to the tag, and the position error of the tag accumulates the position errors of the anchor. To minimize the effect of error propagation, this paper suggests the new scheme of full-mesh based CPS for improving the position accuracy. The proposed schemes assuring localization were validated through experiment results.

자원 재배치를 위한 차량 경로계획의 다목적 최적화 (Multi-objective Optimization of Vehicle Routing with Resource Repositioning)

  • 강재구;임동순
    • 산업경영시스템학회지
    • /
    • 제44권2호
    • /
    • pp.36-42
    • /
    • 2021
  • This paper deals with a vehicle routing problem with resource repositioning (VRPRR) which is a variation of well-known vehicle routing problem with pickup and delivery (VRPPD). VRPRR in which static repositioning of public bikes is a representative case, can be defined as a multi-objective optimization problem aiming at minimizing both transportation cost and the amount of unmet demand. To obtain Pareto sets for the problem, famous multi-objective optimization algorithms such as Strength Pareto Evolutionary Algorithm 2 (SPEA2) can be applied. In addition, a linear combination of two objective functions with weights can be exploited to generate Pareto sets. By varying weight values in the combined single objective function, a set of solutions is created. Experiments accomplished with a standard benchmark problem sets show that Variable Neighborhood Search (VNS) applied to solve a number of single objective function outperforms SPEA2. All generated solutions from SPEA2 are completely dominated by a set of VNS solutions. It seems that local optimization technique inherent in VNS makes it possible to generate near optimal solutions for the single objective function. Also, it shows that trade-off between the number of solutions in Pareto set and the computation time should be considered to obtain good solutions effectively in case of linearly combined single objective function.

무선 센서 네트워크에서 에너지 효율적 패킷 전송을 위한 부하 균형 클러스터링 모델 (A Load Balanced Clustering Model for Energy Efficient Packet Transmission in Wireless Sensor Networks)

  • 이재희;김병기;강승호
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제4권12호
    • /
    • pp.409-414
    • /
    • 2015
  • 제한된 에너지 자원으로 동작하는 무선 센서 네트워크에서는 에너지 소비를 최소화하여 통신하는 방법이 중요한 연구 주제이다. 클러스터 헤드를 가진 구분되는 클러스터 안에 센서 노드를 그룹으로 묶는 클러스터링은 에너지 절약에 가장 효과적인 기술로 알려져 있다. 그러나 클러스터 기반 무선 센서 네트워크에서 클러스터 헤드나 게이트웨이는 수집된 정보를 싱크로 보내는 역할 등을 수행하기 때문에 더 많은 에너지를 소비하게 된다. 부적절한 클러스터의 구성은 게이트웨이에 오버로드를 가중시켜 전체 네트워크의 성능을 저하시킨다. 본 논문에서는 에너지 효율을 높이고 네트워크 수명을 향상시키기 위하여 새로운 부하 균형 클러스터링 모델을 제시하고 이를 분기한정 알고리즘과 다중시작 지역탐색 알고리즘을 설계하여 기존에 제시된 부하 균형 클러스터링 모델과 비교한 후 성능 측정 실험 후 결과를 제시한다.

Feature Selection via Embedded Learning Based on Tangent Space Alignment for Microarray Data

  • Ye, Xiucai;Sakurai, Tetsuya
    • Journal of Computing Science and Engineering
    • /
    • 제11권4호
    • /
    • pp.121-129
    • /
    • 2017
  • Feature selection has been widely established as an efficient technique for microarray data analysis. Feature selection aims to search for the most important feature/gene subset of a given dataset according to its relevance to the current target. Unsupervised feature selection is considered to be challenging due to the lack of label information. In this paper, we propose a novel method for unsupervised feature selection, which incorporates embedded learning and $l_{2,1}-norm$ sparse regression into a framework to select genes in microarray data analysis. Local tangent space alignment is applied during embedded learning to preserve the local data structure. The $l_{2,1}-norm$ sparse regression acts as a constraint to aid in learning the gene weights correlatively, by which the proposed method optimizes for selecting the informative genes which better capture the interesting natural classes of samples. We provide an effective algorithm to solve the optimization problem in our method. Finally, to validate the efficacy of the proposed method, we evaluate the proposed method on real microarray gene expression datasets. The experimental results demonstrate that the proposed method obtains quite promising performance.

실시간 시스템 검증을 위한 지역모형 검사 (Local Model Checking for Verification of Real-Time Systems)

  • 박재호;김성길;황선호;김성운
    • 한국멀티미디어학회논문지
    • /
    • 제3권1호
    • /
    • pp.77-90
    • /
    • 2000
  • 실시간 검증은 명세와 요구사항과의 논리적 정확성 뿐만 아니라 시간적 정확성을 확인하는 일련의 과정이다. 하지만 시간의 무한성에 의해 시스템 상태가 무한히 증가할 수 있는 상태 폭발 문제가 검증과정에서 중요한 문제점이 되고 있다. 본 논문에서는 형식 검증에 기반을 두며, 시스템의 행위 측면을 시간 오토마타로 기술한 시스템 모델이 Timed mu-calculus로 표현된 시스템의 특성에 만족하는지의 여부를 통해 명세의 완전성을 확인하는 실시간 검증 비법을 기술한다. 이를 위해 초기상태의 논리값에 초점을 두어 검증과정에서 필요로 하는 노드로만 Product Graph를 구성하여 노드 값을 결정해나가는 지역모형검사 기법에 대해 제안한다. 이 방법은 모델의 모든 상태를 조사하지 않으므로 상태 폭발 문제를 최소화 시킬 수 있어 실시간 시스템 검증에 효과적으로 적용이 가능하다.

  • PDF

철골 트러스 구조의 자동화 최적설계 (The automated optimum design of steel truss structures)

  • 편해완;김용주;김수원;강문명
    • 한국공간구조학회논문집
    • /
    • 제1권1호
    • /
    • pp.143-155
    • /
    • 2001
  • Generally, truss design has been determined by the designer's experience and intuition. But if we perform the most economical structural design we must consider not only cross-sections of members but also configurations(howe, warren and pratt types etc.) of single truss as the number of panel and truss height. The purpose of this study is to develope automated optimum design techniques for steel truss structures considering cross-sections of members and shape of trusses simultaneously. As the results, it could be possible to find easily the optimum solutions subject to design conditions at the preliminary structural design stage of the steel truss structures. In this study, the objective function is expressed as the whole member weight of trusses, and the applied constraints are as stresses, slenderness ratio, local buckling, deflection, member cross-sectional dimensions and truss height etc. The automated optimum design algorithm of this study is divided into three-level procedures. The first level on member cross-sectional optimization is performed by the sequential unconstrained minimization technique(SUMT) using dynamic programming method. And the second level about truss height optimization is applied for obtaining the optimum truss height by three-equal interval search method. The last level of optimization is applied for obtaining the optimum panel number of truss by integer programming method. The algorithm of multi-level optimization programming technique proposed in this study is more helpful for the economical design of plane trusses as well as space trusses.

  • PDF

새로운 계층적 이동 보상 피라미드 부호화 방식 연구 (A Study on New Hierarchical Motion Compensation Pyramid Coding)

  • 전준현
    • 방송공학회논문지
    • /
    • 제8권2호
    • /
    • pp.181-197
    • /
    • 2003
  • 대역 분할 부호화(Sub-Band Coding: SBC)방식은 계층적 피라미드(hierarchical pyramid) 구조를 갖고 있어 움직임 예측 시 상위 계층에서는 전체적인 이동특성을 추정하고 하위 계층에서는 국부적인 세부 이동 특성을 추정할 수가 있어 실제 동영상 움직임 보상 성능이 매우 우수하다. 이와 같은 계층적 이동보상피라미드를 이용한 기존의 저대역(low-band) 이동보상 피라미드 방식에는 다음 두 가지 문제점들로 인해 매우 심각한 화질 저하가 발생한다. 첫째는 저대역 이동보상 피라미드의 각 계층에서 양자화기가 포함된 부호화기를 사용할 경우 하위 계층의 재생 영상일수록 상위 계층에서 누적된 양자화 오차(quantization error)들을 그대로 포함하기 때문에 연속된 영상에서의 정확한 이동 보상이 어렵게 된다. 둘째는 피라미드의 계층적 구조 모순으로 상위 계층예서 잘못된 움직임 추정(motion estimation)은 하위 계층으로 진행될수록 막대한 성능 저하의 원인이 된다. 본 논문에서는 우선 대역분할 부호화 방식을 이용한 대역별 계층적 이동보상에 대한 수학적 분석을 하였으며, 이를 바탕으로 제안되었던 통과 대역(pass-band) 이동보상 피라미드 방식이 누적된 양자화 오차 요인이 제거됨으로서 기존의 저대역 이동보상 피라미드에 비해 성능이 우수하다는 것을 이론적으로 분석하여 이를 증명하였다. 또한 계층적 이동보상 피라미드에서 매우 중요한 최고 계층의 초기 이동벡터 추정을 위하여 에지 패턴 분류를 이용한 이동벡터 추정 방식을 새로이 제안하였으며, 실험 결과 성능의 우수함이 입증되었다.

레이저 토치의 절단경로 생성을 위한 혼합형 유전알고리즘 (A Hybrid Genetic Algorithm for Generating Cutting Paths of a Laser Torch)

  • 이문규;권기범
    • 제어로봇시스템학회논문지
    • /
    • 제8권12호
    • /
    • pp.1048-1055
    • /
    • 2002
  • The problem of generating torch paths for 2D laser cutting of a stock plate nested with a set of free-formed parts is investigated. The objective is to minimize the total length of the torch path starting from a blown depot, then visiting all the given Parts, and retuning back to the depot. A torch Path consists of the depot and Piercing Points each of which is to be specified for cutting a part. The torch path optimization problem is shown to be formulated as an extended version of the standard travelling salesman problem To solve the problem, a hybrid genetic algorithm is proposed. In order to improve the speed of evolution convergence, the algorithm employs a genetic algorithm for global search and a combination of an optimization technique and a genetic algorithm for local optimization. Traditional genetic operators developed for continuous optimization problems are used to effectively deal with the continuous nature of piercing point positions. Computational results are provided to illustrate the validity of the proposed algorithm.

Complete 3D Surface Reconstruction from Unstructured Point Cloud

  • Kim, Seok-Il;Li, Rixie
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2034-2042
    • /
    • 2006
  • In this study, a complete 3D surface reconstruction method is proposed based on the concept that the vertices, of surface model can be completely matched to the unstructured point cloud. In order to generate the initial mesh model from the point cloud, the mesh subdivision of bounding box and shrink-wrapping algorithm are introduced. The control mesh model for well representing the topology of point cloud is derived from the initial mesh model by using the mesh simplification technique based on the original QEM algorithm, and the parametric surface model for approximately representing the geometry of point cloud is derived by applying the local subdivision surface fitting scheme on the control mesh model. And, to reconstruct the complete matching surface model, the insertion of isolated points on the parametric surface model and the mesh optimization are carried out. Especially, the fast 3D surface reconstruction is realized by introducing the voxel-based nearest-point search algorithm, and the simulation results reveal the availability of the proposed surface reconstruction method.

A Pattern Summary System Using BLAST for Sequence Analysis

  • Choi, Han-Suk;Kim, Dong-Wook;Ryu, Tae-W.
    • Genomics & Informatics
    • /
    • 제4권4호
    • /
    • pp.173-181
    • /
    • 2006
  • Pattern finding is one of the important tasks in a protein or DNA sequence analysis. Alignment is the widely used technique for finding patterns in sequence analysis. BLAST (Basic Local Alignment Search Tool) is one of the most popularly used tools in bio-informatics to explore available DNA or protein sequence databases. BLAST may generate a huge output for a large sequence data that contains various sequence patterns. However, BLAST does not provide a tool to summarize and analyze the patterns or matched alignments in the BLAST output file. BLAST lacks of general and robust parsing tools to extract the essential information out from its output. This paper presents a pattern summary system which is a powerful and comprehensive tool for discovering pattern structures in huge amount of sequence data in the BLAST. The pattern summary system can identify clusters of patterns, extract the cluster pattern sequences from the subject database of BLAST, and display the clusters graphically to show the distribution of clusters in the subject database.