For a practical mobile robot team such as carrying out a search and rescue mission in a disaster area, the localization have to be guaranteed even in an environment where the network infrastructure is destroyed or a global positioning system (GPS) is unavailable. The proposed architecture supports localizing robots seamlessly by finding their relative locations while moving from a global outdoor environment to a local indoor position. The proposed schemes use a cooperative positioning system (CPS) based on the two-way ranging (TWR) technique. In the proposed TWR-based CPS, each non-localized mobile robot act as tag, and finds its position using bilateral range measurements of all localized mobile robots. The localized mobile robots act as anchors, and support the localization of mobile robots in the GPS-shadow region such as an indoor environment. As a tag localizes its position with anchors, the position error of the anchor propagates to the tag, and the position error of the tag accumulates the position errors of the anchor. To minimize the effect of error propagation, this paper suggests the new scheme of full-mesh based CPS for improving the position accuracy. The proposed schemes assuring localization were validated through experiment results.
This paper deals with a vehicle routing problem with resource repositioning (VRPRR) which is a variation of well-known vehicle routing problem with pickup and delivery (VRPPD). VRPRR in which static repositioning of public bikes is a representative case, can be defined as a multi-objective optimization problem aiming at minimizing both transportation cost and the amount of unmet demand. To obtain Pareto sets for the problem, famous multi-objective optimization algorithms such as Strength Pareto Evolutionary Algorithm 2 (SPEA2) can be applied. In addition, a linear combination of two objective functions with weights can be exploited to generate Pareto sets. By varying weight values in the combined single objective function, a set of solutions is created. Experiments accomplished with a standard benchmark problem sets show that Variable Neighborhood Search (VNS) applied to solve a number of single objective function outperforms SPEA2. All generated solutions from SPEA2 are completely dominated by a set of VNS solutions. It seems that local optimization technique inherent in VNS makes it possible to generate near optimal solutions for the single objective function. Also, it shows that trade-off between the number of solutions in Pareto set and the computation time should be considered to obtain good solutions effectively in case of linearly combined single objective function.
제한된 에너지 자원으로 동작하는 무선 센서 네트워크에서는 에너지 소비를 최소화하여 통신하는 방법이 중요한 연구 주제이다. 클러스터 헤드를 가진 구분되는 클러스터 안에 센서 노드를 그룹으로 묶는 클러스터링은 에너지 절약에 가장 효과적인 기술로 알려져 있다. 그러나 클러스터 기반 무선 센서 네트워크에서 클러스터 헤드나 게이트웨이는 수집된 정보를 싱크로 보내는 역할 등을 수행하기 때문에 더 많은 에너지를 소비하게 된다. 부적절한 클러스터의 구성은 게이트웨이에 오버로드를 가중시켜 전체 네트워크의 성능을 저하시킨다. 본 논문에서는 에너지 효율을 높이고 네트워크 수명을 향상시키기 위하여 새로운 부하 균형 클러스터링 모델을 제시하고 이를 분기한정 알고리즘과 다중시작 지역탐색 알고리즘을 설계하여 기존에 제시된 부하 균형 클러스터링 모델과 비교한 후 성능 측정 실험 후 결과를 제시한다.
Feature selection has been widely established as an efficient technique for microarray data analysis. Feature selection aims to search for the most important feature/gene subset of a given dataset according to its relevance to the current target. Unsupervised feature selection is considered to be challenging due to the lack of label information. In this paper, we propose a novel method for unsupervised feature selection, which incorporates embedded learning and $l_{2,1}-norm$ sparse regression into a framework to select genes in microarray data analysis. Local tangent space alignment is applied during embedded learning to preserve the local data structure. The $l_{2,1}-norm$ sparse regression acts as a constraint to aid in learning the gene weights correlatively, by which the proposed method optimizes for selecting the informative genes which better capture the interesting natural classes of samples. We provide an effective algorithm to solve the optimization problem in our method. Finally, to validate the efficacy of the proposed method, we evaluate the proposed method on real microarray gene expression datasets. The experimental results demonstrate that the proposed method obtains quite promising performance.
실시간 검증은 명세와 요구사항과의 논리적 정확성 뿐만 아니라 시간적 정확성을 확인하는 일련의 과정이다. 하지만 시간의 무한성에 의해 시스템 상태가 무한히 증가할 수 있는 상태 폭발 문제가 검증과정에서 중요한 문제점이 되고 있다. 본 논문에서는 형식 검증에 기반을 두며, 시스템의 행위 측면을 시간 오토마타로 기술한 시스템 모델이 Timed mu-calculus로 표현된 시스템의 특성에 만족하는지의 여부를 통해 명세의 완전성을 확인하는 실시간 검증 비법을 기술한다. 이를 위해 초기상태의 논리값에 초점을 두어 검증과정에서 필요로 하는 노드로만 Product Graph를 구성하여 노드 값을 결정해나가는 지역모형검사 기법에 대해 제안한다. 이 방법은 모델의 모든 상태를 조사하지 않으므로 상태 폭발 문제를 최소화 시킬 수 있어 실시간 시스템 검증에 효과적으로 적용이 가능하다.
Generally, truss design has been determined by the designer's experience and intuition. But if we perform the most economical structural design we must consider not only cross-sections of members but also configurations(howe, warren and pratt types etc.) of single truss as the number of panel and truss height. The purpose of this study is to develope automated optimum design techniques for steel truss structures considering cross-sections of members and shape of trusses simultaneously. As the results, it could be possible to find easily the optimum solutions subject to design conditions at the preliminary structural design stage of the steel truss structures. In this study, the objective function is expressed as the whole member weight of trusses, and the applied constraints are as stresses, slenderness ratio, local buckling, deflection, member cross-sectional dimensions and truss height etc. The automated optimum design algorithm of this study is divided into three-level procedures. The first level on member cross-sectional optimization is performed by the sequential unconstrained minimization technique(SUMT) using dynamic programming method. And the second level about truss height optimization is applied for obtaining the optimum truss height by three-equal interval search method. The last level of optimization is applied for obtaining the optimum panel number of truss by integer programming method. The algorithm of multi-level optimization programming technique proposed in this study is more helpful for the economical design of plane trusses as well as space trusses.
대역 분할 부호화(Sub-Band Coding: SBC)방식은 계층적 피라미드(hierarchical pyramid) 구조를 갖고 있어 움직임 예측 시 상위 계층에서는 전체적인 이동특성을 추정하고 하위 계층에서는 국부적인 세부 이동 특성을 추정할 수가 있어 실제 동영상 움직임 보상 성능이 매우 우수하다. 이와 같은 계층적 이동보상피라미드를 이용한 기존의 저대역(low-band) 이동보상 피라미드 방식에는 다음 두 가지 문제점들로 인해 매우 심각한 화질 저하가 발생한다. 첫째는 저대역 이동보상 피라미드의 각 계층에서 양자화기가 포함된 부호화기를 사용할 경우 하위 계층의 재생 영상일수록 상위 계층에서 누적된 양자화 오차(quantization error)들을 그대로 포함하기 때문에 연속된 영상에서의 정확한 이동 보상이 어렵게 된다. 둘째는 피라미드의 계층적 구조 모순으로 상위 계층예서 잘못된 움직임 추정(motion estimation)은 하위 계층으로 진행될수록 막대한 성능 저하의 원인이 된다. 본 논문에서는 우선 대역분할 부호화 방식을 이용한 대역별 계층적 이동보상에 대한 수학적 분석을 하였으며, 이를 바탕으로 제안되었던 통과 대역(pass-band) 이동보상 피라미드 방식이 누적된 양자화 오차 요인이 제거됨으로서 기존의 저대역 이동보상 피라미드에 비해 성능이 우수하다는 것을 이론적으로 분석하여 이를 증명하였다. 또한 계층적 이동보상 피라미드에서 매우 중요한 최고 계층의 초기 이동벡터 추정을 위하여 에지 패턴 분류를 이용한 이동벡터 추정 방식을 새로이 제안하였으며, 실험 결과 성능의 우수함이 입증되었다.
The problem of generating torch paths for 2D laser cutting of a stock plate nested with a set of free-formed parts is investigated. The objective is to minimize the total length of the torch path starting from a blown depot, then visiting all the given Parts, and retuning back to the depot. A torch Path consists of the depot and Piercing Points each of which is to be specified for cutting a part. The torch path optimization problem is shown to be formulated as an extended version of the standard travelling salesman problem To solve the problem, a hybrid genetic algorithm is proposed. In order to improve the speed of evolution convergence, the algorithm employs a genetic algorithm for global search and a combination of an optimization technique and a genetic algorithm for local optimization. Traditional genetic operators developed for continuous optimization problems are used to effectively deal with the continuous nature of piercing point positions. Computational results are provided to illustrate the validity of the proposed algorithm.
In this study, a complete 3D surface reconstruction method is proposed based on the concept that the vertices, of surface model can be completely matched to the unstructured point cloud. In order to generate the initial mesh model from the point cloud, the mesh subdivision of bounding box and shrink-wrapping algorithm are introduced. The control mesh model for well representing the topology of point cloud is derived from the initial mesh model by using the mesh simplification technique based on the original QEM algorithm, and the parametric surface model for approximately representing the geometry of point cloud is derived by applying the local subdivision surface fitting scheme on the control mesh model. And, to reconstruct the complete matching surface model, the insertion of isolated points on the parametric surface model and the mesh optimization are carried out. Especially, the fast 3D surface reconstruction is realized by introducing the voxel-based nearest-point search algorithm, and the simulation results reveal the availability of the proposed surface reconstruction method.
Pattern finding is one of the important tasks in a protein or DNA sequence analysis. Alignment is the widely used technique for finding patterns in sequence analysis. BLAST (Basic Local Alignment Search Tool) is one of the most popularly used tools in bio-informatics to explore available DNA or protein sequence databases. BLAST may generate a huge output for a large sequence data that contains various sequence patterns. However, BLAST does not provide a tool to summarize and analyze the patterns or matched alignments in the BLAST output file. BLAST lacks of general and robust parsing tools to extract the essential information out from its output. This paper presents a pattern summary system which is a powerful and comprehensive tool for discovering pattern structures in huge amount of sequence data in the BLAST. The pattern summary system can identify clusters of patterns, extract the cluster pattern sequences from the subject database of BLAST, and display the clusters graphically to show the distribution of clusters in the subject database.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.