• Title/Summary/Keyword: Local Pressure

Search Result 1,291, Processing Time 0.032 seconds

Study on Estimation of Local Ice Pressures Considering Contact Area with Sea Ice (해빙과의 접촉 면적을 고려한 국부 빙압력 추정 연구)

  • Kim, Tae-Wook;Lee, Tak-Kee
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.423-428
    • /
    • 2014
  • Ice loads may be conveniently categorized as local ice loads and global ice loads. Local ice loads are often defined as ice pressures acting on local areas of shell plates and stiffeners. Therefore, local ice loads are defined in all ice class rules. However, directly measuring the local ice pressure using the actual ice class vessel is a very difficult task because appropriate instruments for direct measurement must be installed on the outer hull, and they are easily damaged by direct ice contacts/impacts. This paper focuses on the estimation of the local ice pressure using the data obtained from icebreaking tests in the Arctic sea in 2010 using the Korean icebreaking research vessel (IBRV) ARAON. When she contacted the sea ice, the local deformation of the side shell was measured by the strain gauges attached to the inside of the shell. Simultaneously, the contact area between the side shell and sea ice is investigated by analyzing the distribution of the measured strain data. Finally, the ice pressures for different contact areas are estimated by performing a structural analysis.

Field measurement of local ice pressures on the ARAON in the Beaufort Sea

  • Lee, Tak-Kee;Lee, Jong-Hyun;Kim, Heungsub;Rim, Chae Whan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.788-799
    • /
    • 2014
  • This study conducted four field measurements of local ice pressure during the icebreaking voyage of the icebreaking research vessel "ARAON" in the Chukchi and Beaufort seas from July to August of 2010. For measurements, 14 strain gauges, including 8 strain gauge rosettes, were set on the bow of the port side. Influence coefficients were determined using a finite element model of the instrumented area and they were used to convert the measured strains on the hull structure to local ice pressures. The converted maximum pressure was calculated as 2.12 MPa on an area of $0.28m^2$. Pressure-area curves were developed from the surveyed pressure data and the results were compared with previously measured data. The study results are expected to provide an understanding of local ice pressures and thus be useful in the structural design of ice class ships.

Failure Pressure Evaluation of Local Wall-Thinned Elbows by Real-scale Burst Tests (실배관 파열실험을 통한 국부감육 곡관 손상압력 평가)

  • Kim, Jin-Weon;Park, Chi-Yong;Lee, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.1017-1024
    • /
    • 2007
  • This study performed a series of burst tests at ambient temperature using real-scale elbow specimen containing a local wall-thinning defect at it's intrados or extrados and evaluated failure pressure of locally wall-thinned elbows. In the experiment, a 90-degree 100A, Sch. 80 standard elbow was employed, and various wall-thinning geometries, such as length, depth, and circumferential angle, were considered. From the results of experiment, the dependences of failure pressure of wall-thinned elbows on the defect geometries and locations were investigated. In addition, the reliability of existing models was examined by comparing the tests data with the results predicted from existing failure pressure evaluation models for locally wall-thinned elbow.

Development of Basic Local Exhaust Ventilation System for Experimental Education (실험실습용 국소배기 기초실험장치의 개발)

  • Han, Don-Hee;Park, Min-Kyu
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.5 s.86
    • /
    • pp.372-378
    • /
    • 2005
  • To enhance educational effect for exhaust ventilation system, more instructive educational engineering such as experimental system should be needed. This study was performed to 1) manufacture the basic experimental system for local exhaust ventilation, 2) experiment with this system and 3) develop methodology of exhaust ventilation education. With this system, three pressures (static pressure(SP), velocity pressure(VP) and total pressure(TP)) were measured and illustrated and the graphic shapes agreed to theoretical ones relatively. Entry loss factor ($F_h$) of each hood was found to be different with hood shape, duct velocity and flow rate. This result implies that precise $F_h$ should be determined case by case and a industrial hygienist should not be dependent on the existing values. Pressure loss using velocity pressure method and characteristics of air movement near hoods using fume were grasped with this system. But larger system should be recommended to produce more precise experimental results.

A Study on the Effect of the Atmospheric Pressure in the Gas Flow Measurement (대기압이 가스유량측정에 미치는 영향에 관한 연구)

  • Chung, Jong-Tae;Ha, Young-Cheol;Lee, Cheol-Gu;Her, Jae-Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.363-369
    • /
    • 2002
  • Orifice meter is the most widely used flowmeter in custody transfer between KOGAS and city gas companies. Absolute pressure value is needed to calculate the gas flow of orifice metering system, but the gauge pressure transmitters are mainly used in the field. In case that the gauge pressure transmitters are used, the fixed value as standard atmospheric pressure(101.325kPa) is applied for the absolute pressure value. The real, local atmospheric pressures of each metering station are different from the standard condition as the altitude and weather conditions. In this study the flow calculation errors were quantitatively analyzed through examining the atmospheric pressures of 50 stations of KOGAS. The data for analysis are such like the time data of supplied gas amount, the altitude of each metering station, the time data of atmospheric pressures and altitudes of each weather observatory. The results showed that the local atmospheric pressures were different from the standard value and the gas flow calculation errors were distributed between $-0.024\%{\~}0.025\%$ based on the supplied gas amount in the year 1999 and 2000.

  • PDF

Korean Medicine Treatment for Pressure Injury in Terminal Stage Cancer Patients with Debridement and Local Flap: A Case Report (변연절제 및 국소 피판술을 시행한 말기 암환자의 욕창에 대한 한의학적 치료 1례)

  • Song, Juyeon;Moon, Jiseong;Min, Seonwoo;Kim, Hakkyeom;Kim, Youngji;Ahn, Lib
    • The Journal of Internal Korean Medicine
    • /
    • v.41 no.3
    • /
    • pp.478-486
    • /
    • 2020
  • Objectives: Pressure injury is a common symptom of end-stage cancer, which impact quality of life. This case study reports on use of traditional Korean medicine in an end-stage cancer patient with pressure injury after debridement and local flap. Methods: A pressure injury with debridement and a local flap was treated using herbal medicine, a carbon arc, acupuncture, dressing, and cooperation in plastic surgery. Pressure injury was followed up with photographs. Results: On the 22nd day of treatment (26 days after the debridement and local flap), redness, swelling, and the condition of pressure injury were all improved. Moreover, the condition of the pressure injury was good without dressing. Conclusions: These results show that traditional Korean medicine may have a positive effect on a pressure injury and improve the quality of life of cancer patients. However, further study is needed to confirm these findings.

The Effect of Public Health Center-Based Hypertension School on Hypertension-related Knowledge, Self-efficacy, Anthropometric Value and Blood Pressure

  • Chang, Koungoh;Kim, Sohee;Lee, Naeyoung
    • International journal of advanced smart convergence
    • /
    • v.7 no.3
    • /
    • pp.44-60
    • /
    • 2018
  • This study is to identify the effects of hypertension management program at a community health center on the disease-related knowledge, self-efficacy, anthropometric measurements and blood pressure of a hypertensive patient in local community. This study is a quasi-experimental study using nonequivalence control group no-synchronized design in order to verify the effects of the hypertension management program at a community health center on the hypertension-related knowledge, self-efficacy, anthropometric measurements and blood pressure of a hypertensive patient in local community. The result indicated a significant difference between the experimental group and control group in the scores of hypertension-related knowledge (t=-4.25, p<.001), self-efficacy (t=-4.20, p<.001), systolic blood pressure (t=7.70, p<.001) and diastolic blood(t=5.91, p<.001), body weight(t=2.32, p=.026) and abdominal circumference(t=2.17, p=.036). The hypertensive patients' knowledge and self-efficacy were improved, and their weight and abdominal circumference as well as systolic blood pressure and diastolic blood pressure were reduced. Therefore, it was confirmed that multilateral approaches in terms of physical and psychosocial aspects only targeting hypertensive patients were required for managing hypertensive patients in local community.

Spray Characteristics of a Pressure Swirl Nozzle for an Ambient Condition due to Flash Boiling (감압 비등에 의한 상압 환경에서의 압력식 와류 노즐의 분무 특성)

  • Kim, Won-Ho;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.686-691
    • /
    • 2010
  • Flash boiling takes place when the thermodynamic state of the liquid deviates from its saturation limit over which the liquid temperature exceeds by a certain degree of superheat. The liquid jet introduced into the lower pressure zone than the liquid saturation pressure experiences a sequence of the atomization and disintegrated into numerous faster and smaller droplets. In the present study spray characteristics for a flash swirl spray were experimentally investigated. Injectant temperature is raised by a high frequency dielectric heating method and local spray characteristics are instantly measured by Global Sizing Velocimetry (GSV, TSI Inc.). Dependence of dimensionless superheat degree and injection pressure on total and local SMDs and mean droplet size is quantitatively examined. The flash swirl spray has the relation in the injection pressure and nozzle diameter in order to determine the spray quality, including the dimensionless superheat degree. Small droplets occur in the void core and local droplet size distributions largely depend on the dimensionless superheat degree and the injection pressure.

  • PDF

On the Thermal Low-pressure Onset using Analytical Model around Daegu in Summer (해석학적모델을 이용한 하계 대구지방의 열적저기압 형성에 관한 연구)

  • 김해동;정우식
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1133-1140
    • /
    • 2002
  • The growth and extent of the local pressure field at any point is of primary importance as it supplies the driving force for the local wind circulation which causes a medium-range transport of air pollutants. The local pressure field is produced by the variation of temperature in the lower layers of the atmosphere, and is called the thermal wave. The thermal wave is influenced by the difference in the diurnal variations between two regions with different surface condition, for example land and sea. This difference produces the land- and sea-breeze phenomenon, and brings corresponding variations in the form of the thermal wave. Daytime temperature over the inland area (Daegu) was higher than that of the coastal area (Busan). The temperature difference reached about 5~6$^{\circ}C$ in the late afternoon(30-31 May 1999). The low pressure system of Daegu was most fully developed at the time. In this study, we investigated the possibility of thermal low onset around Daegu in summer with an analytical model. The topography effect was neglected in the model. We could predict a thermal low-pressure of about 3.4hPa at Daegu with wide flat land surface, when the inland area is about 6K warmer than the coastal area temperature. The pressure decrease is somewhat less than the observed value(4~5 hPa).

Experimental and Computational Investigation of Wind Flow Field on a Span Roof Structure

  • K B Rajasekarababu;G Vinayagamurthy;Ajay Kumar T M;Selvirajan S
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.287-300
    • /
    • 2022
  • Unconventional structures are getting more popular in recent days. Large-span roofs are used for many structures, such as airports, stadiums, and conventional halls. Identifying the pressure distribution and wind load acting on those structures is essential. This paper offers a collaborative study of computational fluid dynamics (CFD) simulations and wind tunnel tests for assessing wind pressure distribution for a building with a combined slender curved roof. The hybrid turbulence model, Improved Delayed Detached Eddy Simulation (IDDES), simulates the open terrain turbulent flow field. The wind-induced local pressure coefficients on complex roof structures and the turbulent flow field around the structure were thus calculated based upon open terrain wind flow simulated with the FLUENT software. Local pressure measurements were investigated in a boundary layer wind tunnel simultaneous to the simulation to determine the pressure coefficient distributions. The results predicted by CFD were found to be consistent with the wind tunnel test results. The comparative study validated that the recommended IDDES model and the vortex method associated with CFD simulation are suitable tools for structural engineers to evaluate wind effects on long-span complex roofs and plan irregular buildings during the design stage.