• Title/Summary/Keyword: Local Material Properties

Search Result 272, Processing Time 0.03 seconds

Evaluation of Mechanical Properties of Welded Joints by an Instrumented Indentation Test and Fatigue Life Evaluation (계장화 압입시험에 의한 용접부의 물성 측정 및 피로수명 예측)

  • Goo, Byeong-Choon;Lee, Dong-Hyung;Kwon, Dong-Il;Choi, Yeol
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.2
    • /
    • pp.142-148
    • /
    • 2004
  • When material properties depend much on positions in a material or it is difficult to make test specimens from a material or component, an instrumented indentation test described in ISO 14577-1, 14577-2 or KS B 0950 can be used to measure material properties and damage. In this study, first of all, the principals of the instrumented indentation test, KS B 0950 are introduced and yield strengths, tensile strengths and work hardening exponents of base materials, heat affected zones and weld materials are measured. In addition, the influence of post-weld heat treatment on the material properties is investigated. Finally the fatigue lift of butt welded specimens are evaluated by the local strain approach. To calculate local strains and stresses, elasto-plastic finite element analysis is conducted using the measured properties.

Microstructure, Thermal Properties and Rheological Behavior of PLA/PCL Blends for Melt-blown Nonwovens (멜트블론 부직포 제조를 위한 PLA/PCL 블렌드의 미세구조, 열적특성, 및 유변학적 성질)

  • Sun, Hui;Yu, Bin;Han, Jan;Kong, Jinjin;Meng, Lingrui;Zhu, Feichao
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.477-483
    • /
    • 2014
  • Poly(lactic acid) (PLA) and poly(${\varepsilon}$-caprolactone) (PCL) blends with various components for melt-blown non-wovens were prepared by a twin-screw extruder. Tributyl citrate (TBC) was added in order to improve the miscibility between PLA and PCL. The results showed that small circular particles of PCL were dispersed in PLA matrix uniformly. The addition of PCL had the heterogeneous nucleation effect on the crystallization of PLA and decreased thermal stability of PLA. The flow of pure PLA and blends approached to Newtonian liquid at a low shear rate and expressed more obvious viscoelasticity at a high shear rate.

Evaluation of Mechanical Properties by Using Instrumented Indentation Testing for Resistance Spot Welds (비파괴 계장화 압입시험을 이용한 저항 점용접부 물성 평가)

  • Choi, Chul-Young;Kim, Jun-Ki;Hong, Jae-Keun;Yeom, Jong-Taek;Park, Yeong-Do
    • Journal of Powder Materials
    • /
    • v.18 no.1
    • /
    • pp.64-72
    • /
    • 2011
  • Nondestructive instrumented indentation test is the method to evaluate the mechanical properties by analyzing load - displacement curve when forming indentation on the surface of the specimen within hundreds of micro-indentation depth. Resistance spot welded samples are known to difficult to measure the local mechanical properties due to the combination of microstructural changes with heat input. Particularly, more difficulties arise to evaluate local mechanical properties of resistance spot welds because of having narrow HAZ, as well as dramatic changed in microstructure and hardness properties across the welds. In this study, evaluation of the local mechanical properties of resistance spot welds was carried out using the characterization of Instrumented Indentation testing. Resistance spot welding were performed for 590MPa DP (Dual Phase) steels and 780MPa TRIP (Transformation Induced Plasticity) steels following ISO 18278-2 condition. Mechanical properties of base metal using tensile test and Instrumented Indentation test showed similar results. Also it is possible to measure local mechanical properties of the center of fusion zone, edge of fusion zone, HAZ and base metal regions by using instrumented indentation test. Therefore, measurement of local mechanical properties using instrumented indentation test is efficient, reliable and relatively simple technique to evaluate the tensile strength, yield strength and hardening exponent.

Fatigue Life Prediction for Resistance Spot Weldment of Aluminum Alloy Sheet (알루미늄 합금판 저항 점용접부의 피로수명 예측)

  • 장건익;안병국;김동건
    • Journal of Welding and Joining
    • /
    • v.20 no.2
    • /
    • pp.116-124
    • /
    • 2002
  • The fatigue life is predicted on tensile-shear spot weldment made from Al-Mg alloy sheet with thickness of 0.8mm using Mitchell's method and uniform material law by $B{\ddot{a}}umel$ and Seeger based on local strain approach. The fatigue properties of critical HAZ region are estimated from the tensile property using simple hardness method. To predict the fatigue life of spot weldment, the local stresses and strains at the potential critical region are estimated by Neuber's rule. The predicted fatigue life based on uniform material law using HAZ's material properties provides good results within a factor of 3, conservatively.

Pultruded GFRP box beams: State-of-the-art review on constituents and structural behavior

  • Mozhdeh Dehshirizadeh;Abolfazl Eslami;Mehdi Khodadad Sar-Yazdi;Hamid R. Ronagh
    • Structural Engineering and Mechanics
    • /
    • v.90 no.2
    • /
    • pp.127-142
    • /
    • 2024
  • In recent decades, pultruded glass fiber-reinforced polymer (GFRP) members including those of box sections have attracted the attention of researchers. Nevertheless, the lack of uniform and consistent material properties, simplified design methods, and practical design codes have so far been the main barrier for field applications. Consequently, this paper highlights the existing knowledge concerning the flexural behavior of pultruded GFRP profiles and their failure modes. In particulate, it reviews the most commonly accepted design expressions and code provisions addressing the flange local buckling of pultruded GFRP box beams as the most likely failure mode. In addition, the material characterization of GFRP sections is described in detail along with the standard test methods to quantify the material characterization of GFRP laminates. It is shown that the critical flange local buckling stresses of pultruded GFRP box beams can be predicted with reliable accuracy using the expressions promulgated by ASCE (1984) (in which the flange plates are considered simply-supported at web-flange junction) and EUR 27666. The expressions stipulated in ASCE (2010) highly overestimates the critical flange local buckling stresses of GFRP box beams resulting in unconservative predictions.

Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory

  • Nejad, Mohammad Zamani;Hadi, Amin;Omidvari, Arash;Rastgoo, Abbas
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.417-425
    • /
    • 2018
  • The main aim of this paper is to investigate the bending of Euler-Bernouilli nano-beams made of bi-directional functionally graded materials (BDFGMs) using Eringen's non-local elasticity theory in the integral form with compare the differential form. To the best of the researchers' knowledge, in the literature, there is no study carried out into integral form of Eringen's non-local elasticity theory for bending analysis of BDFGM Euler-Bernoulli nano-beams with arbitrary functions. Material properties of nano-beam are assumed to change along the thickness and length directions according to arbitrary function. The approximate analytical solutions to the bending analysis of the BDFG nano-beam are derived by using the Rayleigh-Ritz method. The differential form of Eringen's non-local elasticity theory reveals with increasing size effect parameter, the flexibility of the nano-beam decreases, that this is unreasonable. This problem has been resolved in the integral form of the Eringen's model. For all boundary conditions, it is clearly seen that the integral form of Eringen's model predicts the softening effect of the non-local parameter as expected. Finally, the effects of changes of some important parameters such as material length scale, BDFG index on the values of deflection of nano-beam are studied.

Numerical Fatigue Test Method Based on Continuum Damage Mechanics (연속체 손상역학을 이용한 수치 피로시험 기법)

  • Lee, Chi-Seung;Kim, Young-Hwan;Kim, Tae-Woo;Lee, Jae-Myung
    • Journal of Welding and Joining
    • /
    • v.25 no.1
    • /
    • pp.63-69
    • /
    • 2007
  • Once assessment of material failure characteristics is captured precisely in a unified way, it can bedirectly incorporated into the structural failure assessment under various loading environments, based on the theoretical backgrounds so called Local Approach to Fracture. The aim of this study is to develop a numerical fatigue test method by continuum damage mechanics applicable for the assessment of structural integrity throughout crack initiation and structural failure based on the Local Approach to Fracture. The generalized elasto-visco-plastic constitutive equation, which can consider the internal damage evolution behavior, is developed and employed in the 3-D FEA code in order to numerically evaluate the material and/or structural responses. Explicit information of the relationships between the mechanical properties and material constants, which are required for the mechanical constitutive and damage evolution equations for each material, are implemented in numerical fatigue test method. The material constants selected from constitutive equations are used directly in the failure assessment of material and/or structures. The performance of the developed system has been evaluated with assessing the S-N diagram of stainless steel materials.

On the properties of brain sub arachnoid space and biomechanics of head impacts leading to traumatic brain injury

  • Saboori, Parisa;Sadegh, Ali
    • Advances in biomechanics and applications
    • /
    • v.1 no.4
    • /
    • pp.253-267
    • /
    • 2014
  • The human head is identified as the body region most frequently involved in life-threatening injuries. Extensive research based on experimental, analytical and numerical methods has sought to quantify the response of the human head to blunt impact in an attempt to explain the likely injury process. Blunt head impact arising from vehicular collisions, sporting injuries, and falls leads to relative motion between the brain and skull and an increase in contact and shear stresses in the meningeal region, thereby leading to traumatic brain injuries. In this paper the properties and material modeling of the subarachnoid space (SAS) as it relates to Traumatic Brain Injuries (TBI) is investigated. This was accomplished using a simplified local model and a validated 3D finite element model. First the material modeling of the trabeculae in the Subarachnoid Space (SAS) was investigated and validated, then the validated material property was used in a 3D head model. In addition, the strain in the brain due to an impact was investigated. From this work it was determined that the material property of the SAS is approximately E = 1150 Pa and that the strain in the brain, and thus the severity of TBI, is proportional to the applied impact velocity and is approximately a quadratic function. This study reveals that the choice of material behavior and properties of the SAS are significant factors in determining the strain in the brain and therefore the understanding of different types of head/brain injuries.

Towards robust viscoelastic-plastic-damage material model with different hardenings/softenings capable of representing salient phenomena in seismic loading applications

  • Jehel, Pierre;Davenne, Luc;Ibrahimbegovic, Adnan;Leger, Pierre
    • Computers and Concrete
    • /
    • v.7 no.4
    • /
    • pp.365-386
    • /
    • 2010
  • This paper presents the physical formulation of a 1D material model suitable for seismic applications. It is written within the framework of thermodynamics with internal variables that is, especially, very efficient for the phenomenological representation of material behaviors at macroscale: those of the representative elementary volume. The model can reproduce the main characteristics observed for concrete, that is nonsymetric loading rate-dependent (viscoelasticity) behavior with appearance of permanent deformations and local hysteresis (continuum plasticity), stiffness degradation (continuum damage), cracking due to displacement localization (discrete plasticity or damage). The parameters have a clear physical meaning and can thus be easily identified. Although this point is not detailed in the paper, this material model is developed to be implemented in a finite element computer program. Therefore, for the benefit of the robustness of the numerical implementation, (i) linear state equations (no local iteration required) are defined whenever possible and (ii) the conditions in which the presented model can enter the generalized standard materials class - whose elements benefit from good global and local stability properties - are clearly established. To illustrate the capabilities of this model - among them for Earthquake Engineering applications - results of some numerical applications are presented.