• Title/Summary/Keyword: Local Matching

Search Result 414, Processing Time 0.026 seconds

Embedded Fingerprint Verification Algorithm Using Various Local Information (인근 특징 정보를 이용한 임베디드용 지문인식 알고리즘)

  • Park Tea geun;Jung Sun kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4C
    • /
    • pp.215-222
    • /
    • 2005
  • In this paper, we propose a fingerprint verification algorithm for the embedded system based on the minutia extracted using the image quality, the minutia structure, and the Sequency and the orientation of ridges. After the pre- and the post-processing, the true minutia are selected, thus it shows high reliability in the fingerprint verification. In matching process, we consider the errors caused by shift, rotation, and pressure when acquiring the fingerprint image and reduce the matching time by applying a local matching instead of a full matching to select the reference pair. The proposed algorithm has been designed and verified in Arm920T environment and various techniques for the realtime process have been applied. Time taken from the fingerprint registration through out the matching is 0.541 second that is relevant for the realtime applications. The FRR (False Reject Rate) and FAR (False Accept Rate) show 0.079 and 0.00005 respectively.

Extended SURF Algorithm with Color Invariant Feature and Global Feature (컬러 불변 특징과 광역 특징을 갖는 확장 SURF(Speeded Up Robust Features) 알고리즘)

  • Yoon, Hyun-Sup;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.58-67
    • /
    • 2009
  • A correspondence matching is one of the important tasks in computer vision, and it is not easy to find corresponding points in variable environment where a scale, rotation, view point and illumination are changed. A SURF(Speeded Up Robust Features) algorithm have been widely used to solve the problem of the correspondence matching because it is faster than SIFT(Scale Invariant Feature Transform) with closely maintaining the matching performance. However, because SURF considers only gray image and local geometric information, it is difficult to match corresponding points on the image where similar local patterns are scattered. In order to solve this problem, this paper proposes an extended SURF algorithm that uses the invariant color and global geometric information. The proposed algorithm can improves the matching performance since the color information and global geometric information is used to discriminate similar patterns. In this paper, the superiority of the proposed algorithm is proved by experiments that it is compared with conventional methods on the image where an illumination and a view point are changed and similar patterns exist.

An Adaptive Motion Estimation Algorithm Using Spatial Correlation (공간 상관성을 이용한 적응적 움직임 추정 알고리즘)

  • 박상곤;정동석
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.43-46
    • /
    • 2000
  • In this paper, we propose a fast adaptive diamond search algorithm(FADS) for block matching motion estimation. Fast motion estimation algorithms reduce the computational complexity by using the UESA (Unimodal Error Search Assumption) that the matching error monotonically increases as the search moves away from the global minimum error. Recently many fast BMAs(Block Matching Algorithms) make use of the fact that the global minimum points in real world video sequences are centered at the position of zero motion. But these BMAs, especially in large motion, are easily trapped into the local minima and result in poor matching accuracy. So, we propose a new motion estimation algorithm using the spatial correlation among the adjacent blocks. We change the origin of search window according to the spatially adjacent motion vectors and their MAE(Mean Absolute Error). The computer simulation shows that the proposed algorithm has almost the same computational complexity with UCBDS(Unrestricted Center-Biased Diamond Search)〔1〕, but enhance PSNR. Moreover, the proposed algorithm gives almost the same PSNR as that of FS(Full Search), even for the large motion case, with half the computational load.

  • PDF

Stereo Matching Based on Edge and Area Information (경계선 및 영역 정보를 이용한 스테레오 정합)

  • 한규필;김용석;하경훈;하영호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.12
    • /
    • pp.1591-1602
    • /
    • 1995
  • A hybrid approach which includes edge- and region-based methods is considered. The modified non-linear Laplacian(MNL) filter is used for feature extraction. The matching algorithm has three steps which are edge, signed region, and residual region matching. At first, the edge points are matched using the sign and direction of edges. Then, the disparity is propagated from edge to inside region. A variable window is used to consider the local method which give accurate matched points and area-based method which can obtain full-resolution disparity map. In addition, a new relaxation algorithm for considering matching possibility derived from normalized error and regional continuity constraint is proposed to reduce the mismatched points. By the result of simulation for various images, this algorithm is insensitive to noise and gives full- resolution disparity map.

  • PDF

Memory-Efficient Belief Propagation for Stereo Matching on GPU (GPU 에서의 고속 스테레오 정합을 위한 메모리 효율적인 Belief Propagation)

  • Choi, Young-Kyu;Williem, Williem;Park, In Kyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.11a
    • /
    • pp.52-53
    • /
    • 2012
  • Belief propagation (BP) is a commonly used global energy minimization algorithm for solving stereo matching problem in 3D reconstruction. However, it requires large memory bandwidth and data size. In this paper, we propose a novel memory-efficient algorithm of BP in stereo matching on the Graphics Processing Units (GPU). The data size and transfer bandwidth are significantly reduced by storing only a part of the whole message. In order to maintain the accuracy of the matching result, the local messages are reconstructed using shared memory available in GPU. Experimental result shows that there is almost an order of reduction in the global memory consumption, and 21 to 46% saving in memory bandwidth when compared to the conventional algorithm. The implementation result on a recent GPU shows that we can obtain 22.8 times speedup in execution time compared to the execution on CPU.

  • PDF

A Variable Size Block Matching Algorithm Using Local Characteristics of Images (영상의 국부적 성질을 이용한 가변 크기 블록 정합 알고리즘)

  • 김진태;최종수;박래홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.7
    • /
    • pp.62-69
    • /
    • 1992
  • The conventional BMA is performed with the fixed block size. For better performance at low bitrate, the block size is required to be large in relatively stationary area, while small in moving area. Thus, in this paper, a video coding technique using variable block size model is proposed. It decides the block size based on the degree of local motion defined by the local mean and variance of blocks. Computer simulation shows that the proposed method gives comparable performance to the conventional one with less bits required for motion vector coding.

  • PDF

A Fast Motion Estimation Algorithm Based on Multi-Resolution Frame Structure (다 해상도 프레임 구조에 기반한 고속 움직임 추정 기법)

  • Song, Byung-Cheol;Ra, Jong-Beom
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.5
    • /
    • pp.54-63
    • /
    • 2000
  • We present a multi-resolution block matching algorithm (BMA) for fast motion estimation At the coarsest level, a motion vector (MV) having minimum matching error is chosen via a full search, and a MV with minimum matching error is concurrently found among the MVs of the spatially adjacent blocks Here, to examine the spatial MVs accurately, we propose an efficient method for searching full resolution MV s without MV quantization even at the coarsest level The chosen two MV s are used as the initial search centers at the middle level At the middle level, the local search is performed within much smaller search area around each search center If the method used at the coarsest level is adopted here, the local searches can be done at integer-pel accuracy A MV having minimum matching error is selected within the local search areas, and then the final level search is performed around this initial search center Since the local searches are performed at integer-pel accuracy at the middle level, the local search at the finest level does not take an effect on the overall performance So we can skip the final level search without performance degradation, thereby the search speed increases Simulation results show that in comparison with full search BMA, the proposed BMA without the final level search achieves a speed-up factor over 200 with minor PSNR degradation of 02dB at most, under a normal MPEG2 coding environment Furthermore, our scheme IS also suitable for hardware implementation due to regular data-flow.

  • PDF

Evaluation of Feature Extraction and Matching Algorithms for the use of Mobile Application (모바일 애플리케이션을 위한 특징점 검출 연산자의 비교 분석)

  • Lee, Yong-Hwan;Kim, Heung-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.56-60
    • /
    • 2015
  • Mobile devices like smartphones and tablets are becoming increasingly capable in terms of processing power. Although they are already used in computer vision, no comparable measurement experiments of the popular feature extraction algorithm have been made yet. That is, local feature descriptors are widely used in many computer vision applications, and recently various methods have been proposed. While there are many evaluations have focused on various aspects of local features, matching accuracy, however there are no comparisons considering on speed trade-offs of recent descriptors such as ORB, FAST and BRISK. In this paper, we try to provide a performance evaluation of feature descriptors, and compare their matching precision and speed in KD-Tree setup with efficient computation of Hamming distance. The experimental results show that the recently proposed real valued descriptors such as ORB and FAST outperform state-of-the-art descriptors such SIFT and SURF in both, speed-up efficiency and precision/recall.

Genetic Algorithm based Orthogonal Matching Pursuit for Sparse Signal Recovery (희소 신호 복원을 위한 유전 알고리듬 기반 직교 정합 추구)

  • Kim, Seehyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2087-2093
    • /
    • 2014
  • In this paper, an orthogonal matching pursuit (OMP) method combined with genetic algorithm (GA), named GAOMP, is proposed for sparse signal recovery. Some recent greedy algorithms such as SP, CoSaMP, and gOMP improved the reconstruction performance by deleting unsuitable atoms at each iteration. However they still often fail to converge to the solution because the support set could not avoid the local minimum during the iterations. Mutating the candidate support set chosen by the OMP algorithm, GAOMP is able to escape from the local minimum and hence recovers the sparse signal. Experimental results show that GAOMP outperforms several OMP based algorithms and the $l_1$ optimization method in terms of exact reconstruction probability.

Delaunay Triangulation based Fingerprint Matching Algorithm using Quality Estimation and Minutiae Classification (화질 추정과 특징점 분류를 이용한 Delaunay 삼각화 기반의 지문 정합 알고리즘)

  • Sung, Young-Jin;Kim, Gyeong-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.4
    • /
    • pp.547-559
    • /
    • 2010
  • Delaunay triangulation is suitable for fingerprint matching because of its robustness to rotation and translation. However, missing and spurious minutiae degrade the performance and computational efficiency. In this paper, we propose a method of combining local quality assessment and 4-category minutiae classification to improve accuracy and decrease computational complexity in matching process. Experimental results suggest that removing low quality areas from matching candidate areas and classifying minutiae improve computational efficiency without degrading performance. The results proved that the proposed algorithm outperforms the matching algorithm (BOZORTH3) provided by NIST.