• Title/Summary/Keyword: Local Karlovitz Number

Search Result 2, Processing Time 0.023 seconds

Numerical study on extinction of premixed flames using local flame properties (국소화염특성을 고려한 예혼합화염의 소염특성에 관한 수치해석)

  • Jeong, Dae-Heon;Jeong, Seok-Ho;Cho, P.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.125-131
    • /
    • 1997
  • The extinction of premixed flames under the influence of stretch is studied numerically. A wide range of fuel (hydrogen, ethylene, acetylene, methane, propane and methanol) and air mixtures are established in an opposed jet and their flame properties such as flame speed, flame thickness, thermal diffusivity, and stretch rate at extinction are computed. Computations are made using several chemical kinetic mechanism (Smooke, Kee et al. and Peters). The major result is that, in contrast to the various previous claims of extinction Karlovitz number varying over three orders of magnitude, it is found to be constant around two for all of the mixtures tested. That is, premixed flames are extinguished when the physical flow time decreases (due to increased stretch rate) to the point where it approximately equals the chemical reaction time. Here the relevant chemical reaction time is not the one computed using the one-dimensional flame properties as originally suggested in the formulation of Karlovitz number, but rather it is the one obtained using the stretched flame properties which fully reflect the effect of straining on the flame structure.

Dynamic Properties of Outwardly Propagating Spherical Hydrogen-Air Flames at High Temperatures and Pressures

  • Kwon, Oh-Chae
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.325-334
    • /
    • 2004
  • Computational experiments on fundamental un stretched laminar burning velocities and flame response to stretch (represented by the Markstein number) of hydrogen-air flames at high temperatures and pressures were conducted in order to understand the dynamics of the flames including hydrogen as an attractive energy carrier in conditions encountered in practical applications such as internal combustion engines. Outwardly propagating spherical premixed flames were considered for a fuel-equivalence ratio of 0.6, pressures of 5 to 50 atm, and temperatures of 298 to 1000 K. For these conditions, ratios of unstretched-to-stretched laminar burning velocities varied linearly with flame stretch (represented by the Karlovitz number), similar to the flames at normal temperature and normal to moderately elevated pressures, implying that the "local conditions" hypothesis can be extended to the practical conditions. Increasing temperatures tended to reduce tendencies toward preferential-diffusion instability behavior (increasing the Markstein number) whereas increasing pressures tended to increase tendencies toward preferential-diffusion instability behavior (decreasing the Markstein number).