• 제목/요약/키워드: Local Image Processing

검색결과 512건 처리시간 0.036초

주행로봇을 위한 GPU 기반의 고속 인공표식 인식 (GPU based Fast Recognition of Artificial Landmark for Mobile Robot)

  • 권오성;김영균;조영완;서기성
    • 한국지능시스템학회논문지
    • /
    • 제20권5호
    • /
    • pp.688-693
    • /
    • 2010
  • 주행 로봇 환경에서 비전 기반의 물체 인식은 물체의 주변 요소와 동적인 환경에 대한 다양한 영상처리 문제를 포함한다. SURF(Speeded Up Robust Features)는 영상의 크기와 회전변화에 강인하게 물체를 인식하는 알고리즘으로 많은 연구자에 의해 사용되고 있다. 하지만 SURF 기반의 영상처리 방법은 고차원의 벡터 성분을 사용하기 때문에 연산 과정에서 많은 시간을 소비하며, 그로 인해 실시간 시스템에서 수행의 어려움을 가지고 있다. 본 연구에서는 이러한 문제점을 해결하기 위해서, 연산량이 많은 SURF 처리 과정을 GPU(Graphics Processing Unit)에서 수행하도록 하여, 보다 빠른 영상 인식을 구현하고자 한다. NVIDIA의 CUDA 라이브러리를 이용하여 GPU 상의 수행 프로그램을 구현하고, 실험을 통해 이동 로봇의 속도와 영상의 크기변화에 따른 표식의 인식률 및 수행시간에 대해서 CPU와 성능을 비교한다.

스케일 불변적인 연산량 감소를 위한 경량 실시간 소형 적외선 표적 검출 알고리즘 (A Lightweight Real-Time Small IR Target Detection Algorithm to Reduce Scale-Invariant Computational Overhead)

  • 반종희;유준혁
    • 대한임베디드공학회논문지
    • /
    • 제12권4호
    • /
    • pp.231-238
    • /
    • 2017
  • Detecting small infrared targets from the low-SCR images at a long distance is very hard. The previous Local Contrast Method (LCM) algorithm based on the human visual system shows a superior performance of detecting small targets by a background suppression technique through local contrast measure. However, its slow processing speed due to the heavy multi-scale processing overhead is not suitable to a variety of real-time applications. This paper presents a lightweight real-time small target detection algorithm, called by the Improved Selective Local Contrast Method (ISLCM), to reduce the scale-invariant computational overhead. The proposed ISLCM applies the improved local contrast measure to the predicted selective region so that it may have a comparable detection performance as the previous LCM while guaranteeing low scale-invariant computational load by exploiting both adaptive scale estimation and small target feature feasibility. Experimental results show that the proposed algorithm can reduce its computational overhead considerably while maintaining its detection performance compared with the previous LCM.

통계적 영상 품질 측정 (Statistical Image Quality Measure)

  • 배경율
    • 지능정보연구
    • /
    • 제13권4호
    • /
    • pp.79-90
    • /
    • 2007
  • 영상의 품질을 측정하는 것은 영상처리에서 매우 중요한 문제이다. 지금까지 영상 품질을 측정하기 위한 다양한 방법들이 제시되었고, 이들은 수학적인 관점에서 영상의 품질을 적절히 표현해주고 있다. 그러나, 수학적인 측정과 인간의 시각에 의해서 측정되는 품질은 서로 다를 수 있고 영상이 전달되는 최종 대상체는 인간의 시각이기 때문에 이를 고려한 영상품질 측정 방법이 필요하다. 본 논문에서는 사람의 시각적 특성을 고려하여 영상 품질을 측정할 수 있는 통계적 방법을 제시하였다. 사람의 시각은 영상의 전체적인 품질을 판단하면서도 국부적인 위치에서의 품질을 판단하며, 전체적인 영상의 품질보다는 국부적인 위치에서의 품질이 시각적인 영상품질 판단에 미치는 영향이 크다. 본 논문에서는 영상을 세그먼트화하고 각 세그먼트화된 영상에서 얻어진 영상 품질 값에 스코어링을 하는 통계적 기법을 사용하여 시각에 의한 판단과 유사한 결과를 얻었다.

  • PDF

역광 사진의 빠른 보정을 위한 K-Retinex 알고리즘 (K-Retinex algorithm for fast backlight compensation)

  • 강봉협;고한석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.309-310
    • /
    • 2006
  • This paper presents an enhanced algorithm for compensating the visual quality in backlight image. Current cameras do not represent all details of scene into human's eye. Saturation and underexposure are common problems in backlight image. Retinex algorithm, derived from Land's theory on human visual perception is known to be effective in enhancing the contrast. However, its weaknesses are long processing time and low contrast of bright area in backlight scene because of compensating the details of dark area. In this paper, K-Retinex algorithm is proposed to reduce the processing time and enhance the contrast in both dark and bright area. To show the superiority of proposed algorithm, we compare the processing time and local variance of each area above.

  • PDF

Random Forest 분류기와 Bag-of-Feature 특징 히스토그램을 이용한 의료영상 자동 분류 및 검색 (Medical Image Classification and Retrieval Using BoF Feature Histogram with Random Forest Classifier)

  • 손정은;고병철;남재열
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권4호
    • /
    • pp.273-280
    • /
    • 2013
  • 본 논문에서는 의료영상의 특성을 반영하여 픽셀 그래디언트의 방향 값을 특징으로 하는 OCS-LBP (Oriented Center Symmetric Local Binary Patterns) 특징을 개발하고 BoF(Bag-of-Feature)와 Random Forest 분류기를 이용한 영상 검색 방법을 제안한다. 학습영상에서 추출된 특징 값은 code book 으로 군집화 되고, 각 영상들은 code book을 통해 의미 있는 새로운 차원인 BoF특징으로 변환된다. 이렇게 추출된 BoF특징은 Random Forest 분류기에 적용되고 학습된 분류기에 의해 유사한 특성을 갖는 N개의 클래스별로 분류되게 된다. 질의 영상이 입력되면 동일한 OCS-LBP특징이 추출되고 code book을 통해 BoF특징이 추출된다. 전통적인 내용기반 영상검색과는 다르게, 본 논문에서는 질의 영상에서 추출된 BoF특징이 학습된 Random Forest에 적용되어 가장 유사한 K-근접 이웃 (K-nearest neighbor) 클래스들을 선택하고 선택된 클래스들에 포함된 영상들에 대해서만 질의 영상과의 BoF 유사도 측정을 통해 최종 유사한 영상을 검색하게 된다. 실험결과에서 본 논문에서 제안하는 방법은 빠르고 우수한 검색 성능을 보여 주었다.

The Parameter Learning Method for Similar Image Rating Using Pulse Coupled Neural Network

  • Matsushima, Hiroki;Kurokawa, Hiroaki
    • Journal of Multimedia Information System
    • /
    • 제3권4호
    • /
    • pp.155-160
    • /
    • 2016
  • The Pulse Coupled Neural Network (PCNN) is a kind of neural network models that consists of spiking neurons and local connections. The PCNN was originally proposed as a model that can reproduce the synchronous phenomena of the neurons in the cat visual cortex. Recently, the PCNN has been applied to the various image processing applications, e.g., image segmentation, edge detection, pattern recognition, and so on. The method for the image matching using the PCNN had been proposed as one of the valuable applications of the PCNN. In this method, the Genetic Algorithm is applied to the PCNN parameter learning for the image matching. In this study, we propose the method of the similar image rating using the PCNN. In our method, the Genetic Algorithm based method is applied to the parameter learning of the PCNN. We show the performance of our method by simulations. From the simulation results, we evaluate the efficiency and the general versatility of our parameter learning method.

Edge Preserving Smoothing in Infrared Image using Relativity of Guided Filter

  • Kim, Il-Ho
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권12호
    • /
    • pp.27-33
    • /
    • 2018
  • In this paper, we propose an efficient edge preserving smoothing filter for Infrared image that can reduce noise while preserving edge information. Infrared images suffer from low signal-to-noise ratio, low edge detail information and low contrast. So, detail enhancement and noise reduction play crucial roles in infrared image processing. We first apply a guided image filter as a local analysis. After the filtering process, we optimization globally using relativity of guided image filter. Our method outperforms the previous methods in removing the noise while preserving edge information and detail enhancement.

헤파린화 혈액 적합성 고분자 재료

  • 한동근;김영하
    • 대한의용생체공학회:의공학회지
    • /
    • 제8권2호
    • /
    • pp.255-270
    • /
    • 1987
  • A medical image workstation was developed using multimedia technique. The system based on PC-486DX was designed to acquire medical images produced by medical imaging instruments and related audio information, that is, doctors' reporting results. Input information was processed and analyzed, then the results were presented in the form of graph and animation. All the informations of the system were hierarchically related with the image as the apex. Processing and analysis algorithms were implemented so that the diagnostic accuracy could be improved. The diagnosed information can be transferred for patient diagnosis through LAN(local area network).

  • PDF

Runway visual range prediction using Convolutional Neural Network with Weather information

  • Ku, SungKwan;Kim, Seungsu;Hong, Seokmin
    • International Journal of Advanced Culture Technology
    • /
    • 제6권4호
    • /
    • pp.190-194
    • /
    • 2018
  • The runway visual range is one of the important factors that decide the possibility of taking offs and landings of the airplane at local airports. The runway visual range is affected by weather conditions like fog, wind, etc. The pilots and aviation related workers check a local weather forecast such as runway visual range for safe flight. However there are several local airfields at which no other forecasting functions are provided due to realistic problems like the deterioration, breakdown, expensive purchasing cost of the measurement equipment. To this end, this study proposes a prediction model of runway visual range for a local airport by applying convolutional neural network that has been most commonly used for image/video recognition, image classification, natural language processing and so on to the prediction of runway visual range. For constituting the prediction model, we use the previous time series data of wind speed, humidity, temperature and runway visibility. This paper shows the usefulness of the proposed prediction model of runway visual range by comparing with the measured data.